Hybrid Discontinuous Finite Element/Finite Difference Method for Maxwell's Equations
Paper i proceeding, 2010

A fully explicit, discontinuous hybrid finite element/finite difference method is proposed for the numerical solution of Maxwell's equations in the time domain. We call the method hybrid since the different numerical methods, interior penalty discontinuous finite element method, developed in [1], and finite difference method [2], are used in different parts of the computational domain. Thus, the flexibility of finite elements is combined with the efficiency of finite differences. Our numerical experiment illustrates stability of the proposed new method.

adaptive finite element method

Maxwell's equations

discontinuous finite element method

hybrid FEM/FDM methods

Författare

Larisa Beilina

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

AIP Conference Proceedings

0094-243X (ISSN) 1551-7616 (eISSN)

Vol. 1281 324-328
978-0-7354-0834-0 (ISBN)

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

DOI

10.1063/1.3498465

ISBN

978-0-7354-0834-0

Mer information

Skapat

2017-10-08