Thermal cracking of a railway wheel tread due to tread braking -- critical crack sizes and influence of repeated thermal cycles
Journal article, 2013

A numerical study of tread cracking due to thermal loading induced by tread braking is carried out. The analysis features a computationally efficient approach combining two-dimensional finite-element simulations with an analytical evaluation of resulting stress intensity factors. The analysis identifies critical sizes for when existing surface cracks are prone to propagate under thermal loading and resulting crack lengths after propagation. The results imply that fully functional brake systems are not likely to induce thermal crack propagation under normal stop braking, but that with pre-existing defects, a severe drag braking due to malfunctioning brakes may cause very deep cracking. Furthermore, the analysis concludes the cracking to be a static phenomenon related to the most severe brake cycle, i.e. later brake cycles of similar or lower severity will not cause any significant propagation of existing cracks. Additional three-dimensional finite-element simulations are used to validate the model, and they indicate two-dimensional results to be on the conservative side.

Railway tread braking

critical crack sizes

thermal cracking

Author

Sara Caprioli

Dynamics

Tore V Vernersson

Dynamics

Anders Ekberg

Dynamics

Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit

0954-4097 (ISSN) 20413017 (eISSN)

Vol. 227 1 10-18

Driving Forces

Sustainable development

Areas of Advance

Transport

Materials Science

Subject Categories (SSIF 2011)

Applied Mechanics

Vehicle Engineering

DOI

10.1177/0954409712452347

More information

Created

10/6/2017