An anomalous behavior of trypsin immobilized in alginate network
Journal article, 2013

Alginate is a biopolymer used in drug formulations and for surgical purposes. In the presence of divalent cations, it forms solid gels, and such gels are of interest for immobilization of cells and enzymes. In this work, we entrapped trypsin in an alginate gel together with a known substrate, N (alpha)-benzoyl-l-arginine-4-nitroanilide hydrochloride (l-BAPNA), and in the presence or absence of d-BAPNA, which is known to be a competitive inhibitor. Interactions between alginate and the substrate as well as the enzyme were characterized with transmission electron microscopy, rheology, and nuclear magnetic resonance spectroscopy. The biocatalysis was monitored by spectrophotometry at temperatures ranging from 10 to 42 A degrees C. It was found that at 37 and 42 A degrees C a strong acceleration of the reaction was obtained, whereas at 10 A degrees C and at room temperature, the presence of d-BAPNA leads to a retardation of the reaction rate. The same effect was found when the reaction was performed in a non-cross-linked alginate solution. In alginate-free buffer solution, as well as in a solution of carboxymethylcellulose, a biopolymer that resembles alginate, the normal behavior was obtained; however, with d-BAPNA acting as an inhibitor at all temperatures. A more detailed investigation of the reaction kinetics showed that at higher temperature and in the presence of alginate, the curve of initial reaction rate versus l-BAPNA concentration had a sigmoidal shape, indicating an allosteric behavior. We believe that the anomalous behavior of trypsin in the presence of alginate is due to conformational changes caused by interactions between the positively charged trypsin and the strongly negatively charged alginate.

chitosan beads

lipase

Trypsin

silica

sol-gel transition

Alginate

hydrogels

stability

gelation

Immobilization

Allostery

N-alpha-benzoyl-L-arginine-4-nitroanilide hydrochloride

enzyme immobilization

Author

C. Ganachaud

Chalmers, Chemical and Biological Engineering, Applied Surface Chemistry

Diana Bernin

Chalmers, Chemical and Biological Engineering, Applied Surface Chemistry

SuMo Biomaterials

Dan Isaksson

Chalmers, Chemical and Biological Engineering, Applied Surface Chemistry

Krister Holmberg

Chalmers, Chemical and Biological Engineering, Applied Surface Chemistry

Applied Microbiology and Biotechnology

0175-7598 (ISSN) 1432-0614 (eISSN)

Vol. 97 10 4403-4414

Subject Categories (SSIF 2011)

Microbiology

DOI

10.1007/s00253-012-4333-4

More information

Latest update

8/18/2020