Sulfur Tolerance of CaxMn1–yMyO3−δ (M = Mg, Ti) Perovskite-Type Oxygen Carriers in Chemical-Looping with Oxygen Uncoupling (CLOU)
Journal article, 2014

Perovskite-structured oxygen carriers of the type CaxMn1–yMyO3−δ (M = Mg, Ti) have been investigated for the CLOU process. The oxygen carrier particles were produced by spray-drying and were calcined at 1300 °C for 4 h. A batch fluidized-bed reactor was used to investigate the chemical-looping characteristics of the materials. The effect of calcium content, dopants (Mg and Ti), and operating temperature (900, 950, 1000, and 1050 °C) on the oxygen uncoupling property and the reactivity with CH4 in the presence and absence of SO2 was evaluated. In addition, the attrition resistance and mechanical integrity of the oxygen carriers were examined in a jet-cup attrition rig. All of the investigated perovskite-type materials were able to release gas phase oxygen in inert atmosphere. Their reactivity with methane was high and increased with temperature and calcium content, approaching complete gas yield at 1000 °C. The reactivity decreased in the presence of SO2 for all of the investigated oxygen carriers. Decreasing the calcium content resulted in a less severe decrease in reactivity in the presence of SO2, with the exception of materials doped with both Mg and Ti, for which a higher resistance to sulfur deactivation could be maintained even at higher calcium contents. The drop in reactivity in the presence of SO2 also decreased at higher temperatures, and at 1050 °C, the decrease in the reactivity of the Mg- and Ti-doped material was minimal. Sulfur balance over the reactor system indicated that the fraction of the introduced SO2 that passed through the reactor increased with temperature. It was shown that it is possible to regenerate the oxygen carriers during reduction in the absence of SO2. Most of the materials also showed relatively low attrition rates. The results indicate that it is possible to modify the operating conditions and properties of perovskite-type oxygen carriers to decrease or avoid their deactivation by sulfur.

CO2-capture

sulphur deactivation

chemical-looping combustion (CLC)

chemical-looping with oxygen uncoupling (CLOU)

oxygen carrier

perovskite-structured

Author

Mehdi Arjmand

Chalmers, Chemical and Biological Engineering, Environmental Inorganic Chemistry

Roeland F. Kooiman

Eindhoven University of Technology

Magnus Rydén

Chalmers, Energy and Environment, Energy Technology

Henrik Leion

Chalmers, Chemical and Biological Engineering, Environmental Inorganic Chemistry

Tobias Mattisson

Chalmers, Energy and Environment, Energy Technology

Anders Lyngfelt

Chalmers, Energy and Environment, Energy Technology

Energy & Fuels

0887-0624 (ISSN) 1520-5029 (eISSN)

Vol. 28 2 1312-1324

Novel combustion principle with inherent capture of CO2 using combined manganese oxides that release oxygen (NOCO2)

European Commission (EC) (EC/FP7/291235), 2012-03-01 -- 2017-02-28.

Areas of Advance

Energy

Subject Categories

Chemical Engineering

DOI

10.1021/ef402383v

More information

Latest update

3/20/2018