Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world
Journal article, 2014

We present sea level observations derived from the analysis of signal-to-noise ratio (SNR) data recorded by five coastal GPS stations. These stations are located in different regions around the world, both in the northern and in the southern hemisphere, in different multipath environments, from rural coastal areas to busy harbors, and experience different tidal ranges. The recorded SNR data show periodic variations that originate from multipath, i.e. the interference of direct and reflected signals. The general assumption is that for satellite arcs facing the open sea, the rapid SNR variations are due to reflections off the sea surface. The SNR data recorded from these azimuth intervals were analyzed by spectral analysis with two methods: a standard analysis method assuming a static sea level during a satellite arc and an extended analysis method assuming a time dependent sea level during a satellite arc. The GPS-derived sea level results are compared to sea level records from co-located traditional tide gauges, both in the time and in the frequency domain. The sea level time series are highly correlated with correlation coefficients to the order of 0.89–0.99. The root-mean-square (RMS) difference is 6.2 cm for the station with the lowest tidal range of 165 cm and 43 cm for the station with the highest tidal range of 772 cm. The relative accuracy, defined as the ratio of RMS and tidal range, is between 2.4% and 10.0% for all stations. Comparing the standard analysis method and the extended analysis method, the results based on the extended analysis method agree better with the independent tide gauge records for the stations with a high tidal range. For the station with the highest tidal range (772 cm), the RMS is reduced by 47% when using the extended analysis method. Furthermore, the results also indicate that the standard analysis method, assuming a static sea level, can be used for stations with a tidal range of up to about 270 cm, without performing significantly worse than the extended analysis method. Tidal amplitudes and phases are derived by harmonic analysis of the sea level records. Again, a high level of agreement is observed between the tide gauge and the GPS-derived results. Comparing the GPS-derived results, the results based on the extended analysis method show a higher degree of agreement with the traditional tide gauge results for stations with larger tidal ranges. Spectral analysis of the residuals after the harmonic analysis reveals remaining signal power at multiples of the draconitic day. This indicates that the observed SNR data are to some level disturbed by additional multipath signals, in particular for GPS stations that are located in harbors.

Signal-to-noise ratio

Multipath

Reflected signals

GPS

Ocean tide analysis

Tide gauge

Sea level

Author

Johan Löfgren

Chalmers, Earth and Space Sciences, Space Geodesy and Geodynamics

Rüdiger Haas

Chalmers, Earth and Space Sciences, Space Geodesy and Geodynamics

Hans-Georg Scherneck

Chalmers, Earth and Space Sciences, Space Geodesy and Geodynamics

Journal of Geodynamics

0264-3707 (ISSN)

Vol. 80 66-80

Subject Categories

Geophysical Engineering

Remote Sensing

Oceanography, Hydrology, Water Resources

Signal Processing

Geosciences, Multidisciplinary

Roots

Basic sciences

Infrastructure

Onsala Space Observatory

DOI

10.1016/j.jog.2014.02.012

More information

Created

10/6/2017