A Receiver Model for Ultrasonic Ray Tracing in an Inhomogeneous Anisotropic Weld
Journal article, 2014

In this paper, a receiver model for ultrasonic ray tracing simulation is described. This is a complementary part of an existing simulation model and is the next step towards a numerical solution to the inverse problem and thus a NDT methodology for characterization of the dendrite orientation in a weld. The establishment of the receiver model is based on the electromechanical reciprocity principle. A concise retrospect of the weld model and the 2D model is made. The reciprocity principle is applied in an original way to handle the model problem including the back wall. Experimental qualitative validations for both P and SV waves on a specific weld are also made for C-scans included in this paper. Two different cases are studied. The first is a direct incidence of an ultrasonic ray towards the weld, and the second is a reflection from the back surface in the base material followed by an incidence to the weld. Even though mode-converted rays are excluded in the simulations, both the P and SV probe-models show the same behavior as the experimental results. The qualitative validation though reveals that it even if a thorough time-gating of received information would enable exclusion of mode-conversion in the model, inaccuracy of experimental results is affecting the evaluation of the weld model.

Ultrasonic Receiver Model

2D Ray Tracing

Reciprocity Principle

Author

Qingwei Liu

Chalmers, Materials and Manufacturing Technology, Advanced Non-destructive Testing

Gert Persson

Chalmers, Materials and Manufacturing Technology, Advanced Non-destructive Testing

Håkan Wirdelius

Chalmers, Materials and Manufacturing Technology, Advanced Non-destructive Testing

Journal of Modern Physics

2153-120X (eISSN)

Vol. 5 13 1186-1201

Driving Forces

Sustainable development

Areas of Advance

Production

Energy

Materials Science

Roots

Basic sciences

Subject Categories

Reliability and Maintenance

Other Materials Engineering

DOI

10.4236/jmp.2014.513120

More information

Created

10/7/2017