Reasons to apply operability analysis in the design of integrated biorefineries
Journal article, 2015
The implementation of a biorefinery concept through the integration of new biomass conversion processes with existing industrial plants offers a potential for high overall biomass-to-product efficiencies and cost-effective production. To reach this potential, a high degree of process integration is essential. This implies that there will be strong interconnections between the different processing units in the original plant and the new biorefinery process, and thereby a risk of operability difficulties. Consequently, there is a need to consider operational objectives, together with economic and environmental ones in biorefinery integration design problems. This paper focuses on the operability of an industrial plant that is retrofitted with a new biorefinery process. The existing industrial plant is considered to be an energy-intensive, mature, commodity-producing plant and retrofit of this plant is necessary for enabling efficient integration and synergy effects of co-locating the biorefinery process with the existing process, instead of building a stand-alone greenfield plant. A wide range of operability issues associated with the integration of the biorefinery is considered, including flexibility, controllability, and reliability. The main issues that affect the operability when integrating a new biorefinery process to an existing industrial plant are investigated. Core operability issues to consider in the design and evaluation of future biorefinery concepts are highlighted and opportunities for further research and methodology development activities are identified.
flexibility
operability
reliability
controllability
biorefinery
integration