Bacillus subtilisSalA is a phosphorylation-dependent transcription regulator that represses scoC and activates the production of the exoprotease AprE
Journal article, 2015

Bacillus subtilisMrp family protein SalA has been shown to indirectly promote the production of the exoprotease AprE by inhibiting the expression of scoC, which codes for a repressor of aprE. The exact mechanism by which SalA influences scoC expression has not been clarified previously. We demonstrate that SalA possesses a DNA-binding domain (residues 1-60), which binds to the promoter region of scoC. The binding of SalA to its target DNA depends on the presence of ATP and is stimulated by phosphorylation of SalA at tyrosine 327. The B.subtilis protein-tyrosine kinase PtkA interacts specifically with the C-terminal domain of SalAin vivo and in vitro and is responsible for activating its DNA binding via phosphorylation of tyrosine 327. In vivo, a mutant mimicking phosphorylation of SalA (SalA Y327E) exhibited a strong repression of scoC and consequently overproduction of AprE. By contrast, the non-phosphorylatable SalA Y327F and the ΔptkA exhibited the opposite effect, stronger expression of scoC and lower production of the exoprotease. Interestingly, both SalA and PtkA contain the same ATP-binding Walker domain and have thus presumably arisen from the common ancestral protein. Their regulatory interplay seems to be conserved in other bacteria.

Author

Abderahmane Derouiche

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Lei Shi

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

V. Bidnenko

Microbiologie de l'Alimentation au Service de la Sante Humaine

M. Ventroux

Microbiologie de l'Alimentation au Service de la Sante Humaine

N. Pigonneau

Microbiologie de l'Alimentation au Service de la Sante Humaine

M. Franz-Wachtel

University of Tübingen

Aida Kalantari

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

S. Nessler

University of Paris-Sud

M. F. Noirot-Gros

Microbiologie de l'Alimentation au Service de la Sante Humaine

Ivan Mijakovic

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Molecular Microbiology

0950-382X (ISSN) 1365-2958 (eISSN)

Vol. 97 6 1195-1208

Subject Categories

Biochemistry and Molecular Biology

DOI

10.1111/mmi.13098

PubMed

26094643

More information

Latest update

8/1/2018 1