Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides
Journal article, 2015

In this paper we introduce a low-stress silicon enriched nitride platform that has potential for nonlinear and highly integrated optics. The manufacturing process of this platform is CMOS compatible and the increased silicon content allows tensile stress reduction and crack free layer growth of 700 nm. Additional benefits of the silicon enriched nitride is a measured nonlinear Kerr coefficient n2 of 1.4*10^18 m2/W (5 times higher than stoichiometric silicon nitride) and a refractive index of 2.1 at 1550 nm that enables high optical field confinement allowing high intensity nonlinear optics and light guidance even with small bending radii. We analyze the waveguide loss (~1 dB/cm) in a spectrally resolved fashion and include scattering loss simulations based on waveguide surface roughness measurements. Detailed simulations show the possibility for fine dispersion and nonlinear engineering. In nonlinear experiments we present continuouswave wavelength conversion and demonstrate that the material does not show nonlinear absorption effects. Finally, we demonstrate microfabrication of resonators with high Q-factors (~10^5).

Nonlinear optics - four-wave mixing

Resonators

Integrated optics devices

Semiconductor materials

Wavelength conversion devices

Nanostructure fabrication

Author

Clemens Krückel

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Attila Fülöp

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Thomas Klintberg

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Jörgen Bengtsson

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Peter Andrekson

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Victor Torres Company

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Optics Express

1094-4087 (ISSN)

Vol. 23 20 25827-25837

Phase-sensitive optical parametric amplifiers (PSOPA)

European Commission (FP7), 2012-03-01 -- 2017-02-28.

Areas of Advance

Information and Communication Technology

Nanoscience and Nanotechnology (2010-2017)

Subject Categories

Atom and Molecular Physics and Optics

Nano Technology

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1364/OE.23.025827

PubMed

26480096

More information

Latest update

11/22/2018