Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides
Artikel i vetenskaplig tidskrift, 2015

In this paper we introduce a low-stress silicon enriched nitride platform that has potential for nonlinear and highly integrated optics. The manufacturing process of this platform is CMOS compatible and the increased silicon content allows tensile stress reduction and crack free layer growth of 700 nm. Additional benefits of the silicon enriched nitride is a measured nonlinear Kerr coefficient n2 of 1.4*10^18 m2/W (5 times higher than stoichiometric silicon nitride) and a refractive index of 2.1 at 1550 nm that enables high optical field confinement allowing high intensity nonlinear optics and light guidance even with small bending radii. We analyze the waveguide loss (~1 dB/cm) in a spectrally resolved fashion and include scattering loss simulations based on waveguide surface roughness measurements. Detailed simulations show the possibility for fine dispersion and nonlinear engineering. In nonlinear experiments we present continuouswave wavelength conversion and demonstrate that the material does not show nonlinear absorption effects. Finally, we demonstrate microfabrication of resonators with high Q-factors (~10^5).

Semiconductor materials

Nonlinear optics - four-wave mixing

Wavelength conversion devices

Integrated optics devices

Resonators

Nanostructure fabrication

Författare

Clemens Krückel

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Attila Fülöp

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Thomas Klintberg

Chalmers University of Technology

Jörgen Bengtsson

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Peter Andrekson

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Victor Torres Company

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Optics Express

1094-4087 (ISSN)

Vol. 23 25827-25837

Styrkeområden

Informations- och kommunikationsteknik

Nanovetenskap och nanoteknik

Ämneskategorier

Atom- och molekylfysik och optik

Nanoteknik

Annan elektroteknik och elektronik

DOI

10.1364/OE.23.025827

PubMed

26480096