Resonant second-harmonic generation in a ballistic graphene transistor with an ac-driven gate
Journal article, 2016

We report a theoretical study of time-dependent transport in a ballistic graphene field effect transistor. We develop a model based on Floquet theory describing Dirac electron transmission through a harmonically driven potential barrier. Photon-assisted tunneling results in excitation of quasibound states at the barrier. Under resonance conditions, the excitation of the quasibound states leads to promotion of higher-order sidebands and, in particular, an enhanced second harmonic of the source-drain conductance. The resonances in the main transmission channel are of the Fano form, while they are of the Breit-Wigner form for sidebands. For weak ac drive strength Z(1), the dynamic Stark shift scales as Z(1)(4), while the resonance broadens as Z(1)(2). We discuss the possibility of utilizing the resonances in prospective ballistic high-frequency devices, in particular frequency doublers operating at high frequencies and low temperatures.

Author

Yevgeniy Korniyenko

Chalmers, Microtechnology and Nanoscience (MC2), Applied Quantum Physics

Oleksii Shevtsov

Chalmers, Microtechnology and Nanoscience (MC2), Applied Quantum Physics

Tomas Löfwander

Chalmers, Microtechnology and Nanoscience (MC2), Applied Quantum Physics

Physical Review B

2469-9950 (ISSN) 2469-9969 (eISSN)

Vol. 93 3

Subject Categories (SSIF 2011)

Other Physics Topics

DOI

10.1103/PhysRevB.93.035435

More information

Latest update

8/8/2023 6