Resonant second-harmonic generation in a ballistic graphene transistor with an ac-driven gate
Artikel i vetenskaplig tidskrift, 2016

We report a theoretical study of time-dependent transport in a ballistic graphene field effect transistor. We develop a model based on Floquet theory describing Dirac electron transmission through a harmonically driven potential barrier. Photon-assisted tunneling results in excitation of quasibound states at the barrier. Under resonance conditions, the excitation of the quasibound states leads to promotion of higher-order sidebands and, in particular, an enhanced second harmonic of the source-drain conductance. The resonances in the main transmission channel are of the Fano form, while they are of the Breit-Wigner form for sidebands. For weak ac drive strength Z(1), the dynamic Stark shift scales as Z(1)(4), while the resonance broadens as Z(1)(2). We discuss the possibility of utilizing the resonances in prospective ballistic high-frequency devices, in particular frequency doublers operating at high frequencies and low temperatures.

Författare

Yevgeniy Korniyenko

Chalmers, Mikroteknologi och nanovetenskap (MC2), Tillämpad kvantfysik

Oleksii Shevtsov

Chalmers, Mikroteknologi och nanovetenskap (MC2), Tillämpad kvantfysik

Tomas Löfwander

Chalmers, Mikroteknologi och nanovetenskap (MC2), Tillämpad kvantfysik

Physical Review B: covering condensed matter and materials physics

2469-9969 (eISSN)

Vol. 93

Ämneskategorier

Fysik

DOI

10.1103/PhysRevB.93.035435