Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway
Journal article, 2016
deletion
Metabolic engineering
3-Hydroxypropionic acid
increases
mutations
chemicals
flux analysis
Redox metabolism
reveals
growth
escherichia-coli
Saccharomyces cerevisiae
yeast
genes
Author
K. R. Kildegaard
Technical University of Denmark (DTU)
N. B. Jensen
Technical University of Denmark (DTU)
Evolva Biotech
K. Schneider
Technical University of Denmark (DTU)
E. Czarnotta
RWTH Aachen University
E. Ozdemir
Technical University of Denmark (DTU)
T. Klein
Technical University of Denmark (DTU)
J. Maury
Technical University of Denmark (DTU)
B. E. Ebert
RWTH Aachen University
H. B. Christensen
Technical University of Denmark (DTU)
Yun Chen
Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology
Il-Kwon Kim
Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology
Paikkwang Industrial Co. Ltd
M. J. Herrgard
Technical University of Denmark (DTU)
L. M. Blank
RWTH Aachen University
J. Forster
Technical University of Denmark (DTU)
Jens B Nielsen
Technical University of Denmark (DTU)
Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology
I. Borodina
Technical University of Denmark (DTU)
Microbial Cell Factories
14752859 (eISSN)
Vol. 15 1 53Subject Categories (SSIF 2011)
Biological Sciences
Areas of Advance
Energy
Life Science Engineering (2010-2018)
DOI
10.1186/s12934-016-0451-5