Nanophotonics-based low-temperature PECVD epitaxial crystalline silicon solar cells
Journal article, 2016

The enhancement of light absorption via nanopatterning in crystalline silicon solar cells is becoming extremely important with the decrease of wafer thickness for the further reduction of solar cell fabrication cost. In order to study the influence of nanopatterning on crystalline silicon thin-film solar cells, we applied two lithography techniques (laser interference lithography and nanoimprint lithography) combined with two etching techniques (dry and wet) to epitaxial crystalline silicon thin films deposited via plasma-enhanced chemical vapor deposition at 175 degrees C. The influence of nanopatterning with different etching profiles on solar cell performance is studied. We found that the etching profiles (pitch, depth and diameter) have a stronger impact on the passivation quality (open circuit voltage and fill factor) than on the optical performance (short circuit current density) of the solar cells. We also show that nanopatterns obtained via wet-etching can improve solar cell performance; and in contrast, dry-etching leads to poor passivation related to the etching profile, surface damage, and/ or contamination introduced during the etching process.

PECVD

thin film

solar cells

nanophotonics

Author

W. H. Chen

University Paris-Saclay

R. Cariou

University Paris-Saclay

M. Foldyna

University Paris-Saclay

V. Depauw

Interuniversity Micro-Electronics Center at Leuven

C. Trompoukis

Interuniversity Micro-Electronics Center at Leuven

E. Drouard

Institut des Nanotechnologies de Lyon

L. Lalouat

Institut des Nanotechnologies de Lyon

A. Harouri

Institut des Nanotechnologies de Lyon

Johan Liu

Institut des Nanotechnologies de Lyon

A. Fave

Institut des Nanotechnologies de Lyon

R. Orobtchouk

Institut des Nanotechnologies de Lyon

F. Mandorlo

Institut des Nanotechnologies de Lyon

C. Seassal

Institut des Nanotechnologies de Lyon

Ines Massiot

Chalmers, Physics, Bionanophotonics

Alexander Dmitriev

Chalmers, Physics, Bionanophotonics

K. Lee

Obducat Technologies Ab

P. R. I. Cabarrocas

University Paris-Saclay

Journal of Physics D: Applied Physics

0022-3727 (ISSN) 13616463 (eISSN)

Vol. 49 12 125603

Nanophotonics for ultra-thin crystalline silicon photovoltaics (PHOTONVOLTAICS)

European Commission (EC) (EC/FP7/309127), 2012-11-01 -- 2015-10-31.

Subject Categories

Condensed Matter Physics

DOI

10.1088/0022-3727/49/12/125603

More information

Latest update

4/5/2022 6