Statistical modelling and analyses of DNA sequence data with applications to metagenomics
Doctoral thesis, 2017
bioinformatics
normalisation
gene abundance data
generalised hidden Markov models
statistical modelling
DNA sequence data
metagenomics
Author
Mariana Buongermino Pereira
Chalmers, Mathematical Sciences, Applied Mathematics and Statistics
HattCI: Fast and Accurate attC site Identification Using Hidden Markov Models.
Journal of Computational Biology,;Vol. 23(2016)p. 891-902
Journal article
A comprehensive survey of integron-mediated genes present in metagenomes.
Computational and statistical considerations in the analysis of metagenomic data. (Accepted)
Comparison of normalization methods for the analysis of metagenomic gene abundance data.
Subject Categories (SSIF 2011)
Bioinformatics (Computational Biology)
Probability Theory and Statistics
ISBN
978-91-7597-607-5
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4288
Publisher
Chalmers
Pascal, Department of Mathematical Sciences, Chalmers tvärgata 3, Gothenburg
Opponent: Inge Jonassen