Scalability analysis methodology for passive optical interconnects in data center networks using PAM
Journal article, 2017

A framework is developed for modeling the fundamental impairments in optical datacenter interconnects, i.e., the power loss and the receiver noises. This framework makes it possible, to analyze the trade-offs between data rates, modulation order, and number of ports that can be supported in optical interconnect architectures, while guaranteeing that the required signal-to-noise ratios are satisfied. To the best of our knowledge, this important assessment methodology is not yet available. As a case study, the trade-offs are investigated for three coupler-based top-of-rack interconnect architectures, which suffer from serious insertion loss. The results show that using single-port transceivers with 10 GHz bandwidth, avalanche photodiode detectors, and quadratical pulse amplitude modulation, more than 500 ports can be supported.

Passive optical interconnect (POI)

Top-of-rack (ToR)

Multi-level pulse amplitude modulation (M-PAM)

Data center networks

Scalability

Author

R. Lin

Huazhong University of Science and Technology

Royal Institute of Technology (KTH)

Krzysztof Szczerba

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Erik Agrell

Chalmers, Signals and Systems, Communication, Antennas and Optical Networks

Lena Wosinska

Royal Institute of Technology (KTH)

M. Tang

Huazhong University of Science and Technology

D. M. Liu

Huazhong University of Science and Technology

J. Chen

Royal Institute of Technology (KTH)

Optics Communications

0030-4018 (ISSN)

Vol. 403 283-289

Subject Categories (SSIF 2011)

Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1016/j.optcom.2017.07.052

More information

Latest update

12/10/2019