A high-performance lab-on-a-chip liquid sensor employing surface acoustic wave resonance
Journal article, 2017

We demonstrate herein a new concept for lab-on-a-chip in-liquid sensing, through integration of surface acoustic wave resonance (SAR) in a one-port configuration with a soft polymer microfluidic delivery system. In this concept, the reflective gratings of a one-port surface acoustic wave (SAW) resonator are employed as mass loading-sensing elements, while the SAW transducer is protected from the measurement environment. We describe the design, fabrication, implementation, and characterization using liquid medium. The sensor operates at a frequency of 185 MHz and has demonstrated a comparable sensitivity to other SAW in-liquid sensors, while offering quality factor (Q) value in water of about 250, low impedance and fairly low susceptibility to viscous damping. For proof of principle, sensing performance was evaluated by means of binding 40 nm neutravidin-coated SiO2 nanoparticles to a biotin-labeled lipid bilayer deposited over the reflectors. Frequency shifts were determined for every step of the affinity assay. Demonstration of this integrated technology highlights the potential of SAR technology for in-liquid sensing.

resonance

microfluidics

surface acoustic waves

sensor

integration

Author

Kiryl Kustanovich

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry

Ventsislav Mitkov Yanchev

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry

Vladimir Kirejev

Chalmers, Chemistry and Chemical Engineering

Gavin Jeffries

Chalmers, Chemistry and Chemical Engineering

Tatsiana Lobovkina

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry

Aldo Jesorka

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry

Journal of Micromechanics and Microengineering

0960-1317 (ISSN) 13616439 (eISSN)

Vol. 27 11 114002

Reservoir Computing with Real-time Data for future IT (RECORD-IT)

European Commission (EC) (EC/H2020/664786), 2015-09-01 -- 2018-08-31.

Subject Categories

Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1088/1361-6439/aa8f21

More information

Latest update

4/5/2022 6