RVE computations with error control and adaptivity: the power of duality
Journal article, 2007

The goal of computational homogenization is to obtain the macro-scale response, normally in terms of macro-scale stress for given macro-scale deformation, via RVE-computations. In this paper we investigate, in a systematic manner, the effects of Dirichlet and Neumann boundary conditions on the RVE. Adaptive computations are carried out with respect to, in particular, control of the error in the macro-scale stress tensor. This requires the corresponding dual solutions. As a new result, it is shown how the same dual solutions can be conveniently used in computing the algorithmic tangent stiffness tensor, thereby demonstrating the "power of duality". © Springer Verlag 2007.

Author

Fredrik Larsson

Chalmers, Applied Mechanics, Material and Computational Mechanics

Kenneth Runesson

Chalmers, Applied Mechanics, Material and Computational Mechanics

Computational Mechanics

0178-7675 (ISSN) 1432-0924 (eISSN)

Vol. 39 5 647-661

Subject Categories (SSIF 2011)

Applied Mechanics

DOI

10.1007/s00466-006-0108-z

More information

Created

10/7/2017