Co-detection of dopamine and glucose with high temporal resolution
Journal article, 2018

Neuronal activity and brain glucose metabolism are tightly coupled, where triggered neurotransmission leads to a higher demand for glucose. To better understand the regulation of neuronal activity and its relation to high-speed metabolism, development of analytical tools that can temporally resolve the transients of vesicular neurotransmitter release and fluctuations of metabolites such as glucose in the local vicinity of the activated neurons is needed. Here we present an amperometric biosensor design for rapid co-detection of glucose and the neurotransmitter dopamine. The sensor is based on the immobilization of an ultra-thin layer of glucose oxidase on to a gold-nanoparticle-covered carbon fiber microelectrode. Our electrode, by altering the potential applied at the sensor surface, allows for the high-speed recording of both glucose and dopamine. We demonstrate that, even though glucose is electrochemically detected indirectly through the enzymatic product and the electroactive dopamine is sensed directly, when exposing the sensor surface to a mixture of the two analytes, fluctuations in glucose and dopamine concentrations can be visu alized with similar speed and at a millisecond time scale. Hence, by minimizing the enzyme coating thickness at the sensor surface, dual detection of glucose and dopamine can be realized at the same sensor surface and at time scales necessary for monitoring fast metabolic alterations during neurotransmission.


Jenny Bergman

University of Gothenburg

Lisa Mellander

University of Gothenburg

Yuanmo Wang

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry, Analytical Chemistry

Ann-Sofie Cans

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry


2073-4344 (ISSN)

Vol. 8 1 34

Subject Categories

Analytical Chemistry

Other Chemical Engineering

Other Chemistry Topics



More information

Latest update