Diastereomeric Effects in DNA Binding – Biological and Biophysical Studies on Ruthenium Complexes
Doctoral thesis, 2018
to have efficient methods for evaluating ligand-DNA binding properties would greatly simplify the search for potential therapeutic candidates.
The key focus in this thesis is the binding interactions between DNA and a group of DNA-intercalating ruthenium complexes. It is demonstrated using spectroscopic and calorimetric methods that both chirality and small changes in the molecular structure of the complex can have significant impact on the binding properties of the complex. Furthermore, a general algorithm used for thermodynamically characterize the ligand-DNA binding interactions is presented as a simplified method for fitting binding models to complex systems. From both photophysical and calorimetric results it is evident that cooperativity between neighboring bound ligands has a huge impact on the overall binding interactions between ruthenium complexes and DNA and must be taken into account in order to find a satisfactory fit of a theoretical binding model. Finally, ruthenium complexes are shown in vitro to have a high antimicrobial activity comparable to clinically available antibiotics and it is again evident that chirality have a strong influence on the binding properties of the complex. As a continuance to the promising antimicrobial results, an alternative type of antibiotic is presented in the concluding remarks as a possible counteract to the ongoing and growing problem of multi-resistant bacteria.
neighbor interaction
spectroscopy
diastereomeric
kinetics
antimicrobial activity
ruthenium
calorimetry
intercalation
DNA
enantiomer
Author
Anna Mårtensson
Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry
Binding of Ru(terpyridine)(pyridine)dipyridophenazine to DNA studied with polarized spectroscopy and calorimetry
Dalton Transactions,;Vol. 44(2015)p. 3604-3613
Journal article
Competitive DNA binding of Ru(bpy)2dppz2+ enantiomers studied with isothermal titration calorimetry (ITC) using a direct and general binding isotherm algorithm
Physical Chemistry Chemical Physics,;Vol. 20(2018)p. 7920-7930
Journal article
Effects of methyl substitution on DNA binding enthalpies of enantiopure Ru(phenanthroline)2dipyridophenazine2+ complexes
Physical Chemistry Chemical Physics,;Vol. 20(2018)p. 11336-11341
Journal article
Mårtensson, A. K. F. and Lincoln, P. Diastereomeric crowding effects in the competitive DNA intercalation of Ru(phenanthroline)2dipyridophenazine2+ enantiomers
Diastereomeric bactericidal effect of Ru(phenanthroline)(2)dipyridophenazine
Chirality,;Vol. 28(2016)p. 713-720
Journal article
Ett vanligt sätt för små molekyler att binda till DNA är genom att delvis vara instuckna mittemellan två baspar. Det här bindningssättet kallas för interkalering och ligger till basis för min forskning. DNA-bindande ruteniumkomplex har tidigare visat sig binda väldigt starkt till DNA via interkalering. De har också visat sig ha en preferens till att binda till AT-baspar hellre än GC-baspar. Stark bindningsförmåga och potentiell selektivitet är båda väldigt attraktiva egenskaper vid utvecklandet av nya läkemedel. I min forskning har jag undersökt hur den molekylära strukturen på ruteniumkomplexet påverkar komplexets bindningsegenskaper. Genom spektrofotometriska och kalorimetriska experiment har jag utvecklat en enkel metod att få fram sannolika bindningsmodeller för DNA-bindande molekyler. Vidare har jag också demonstrerat hur DNA-bindande ruteniumkomplex också har en kraftig antimikrobiell förmåga, vilket innebär att ruteniumkomplex potentiellt kan utvecklas till en ny familj av antibiotika. Det är min förhoppning att detta ska bidra till utvecklandet av nya, förbättrade DNA-bindande läkemedel.
Areas of Advance
Nanoscience and Nanotechnology (SO 2010-2017, EI 2018-)
Subject Categories
Physical Chemistry
Biochemistry and Molecular Biology
Biophysics
Microbiology
Microbiology in the medical area
Roots
Basic sciences
ISBN
978-91-7597-693-8
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4374
Publisher
Chalmers
KE
Opponent: Prof. Jim A. Thomas, Department of Chemistry, The University of Sheffield, UK