Graphene field-effect transistors for high frequency applications
Paper in proceeding, 2018

Realization of competitive high frequency graphene field-effect transistors (GFETs) is hindered, in particular, by extrinsic scattering of charge carriers and relatively high contact resistance of the graphene-metal contacts, which are both defined by the quality of the corresponding graphene top interfaces [1]. In this work, we report on improved performance of GFETs fabricated using high quality chemical vapour deposition (CVD) graphene and modified technology steps. The modified processing flow starts with formation of the gate dielectric, which allows for preserving the high velocity of charge carriers, and, simultaneously, providing very low contact resistance. The transfer line method (TLM) analysis and fitting the GFET transfer characteristics (Fig. 1) both reveal very low specific width contact resistivity of the top contacts, down to 95 Ω⋅μm. Fitting shows also that the field-effect mobility in the GFETs can be up to 5000 cm2/(V⋅s). The measured (extrinsic) transit frequency (fT) and the maximum frequency of oscillation (fmax) are up to 35 GHz and 40 GHz, respectively, for GFETs with gate length Lg=0.5 μm (Fig. 2), which are highest among those reported so far for the GFETs with similar gate length and comparable with those of Si MOSFETs [2,3]. The dependencies of the fT and fmax on the gate length indicate that these GFETs are very promising for the scaling down and in particular for the development of power amplifiers operating in the mm-wave frequency range.

Author

Muhammad Asad

Chalmers, Microtechnology and Nanoscience (MC2), Terahertz and Millimetre Wave Laboratory

Marlene Bonmann

Chalmers, Microtechnology and Nanoscience (MC2), Terahertz and Millimetre Wave Laboratory

Xinxin Yang

Chalmers, Microtechnology and Nanoscience (MC2), Terahertz and Millimetre Wave Laboratory

Andrei Vorobiev

Chalmers, Microtechnology and Nanoscience (MC2), Terahertz and Millimetre Wave Laboratory

Jan Stake

Chalmers, Microtechnology and Nanoscience (MC2), Terahertz and Millimetre Wave Laboratory

Luca Banszerus

RWTH Aachen University

Christoph Stampfer

RWTH Aachen University

Martin Otto

AMO

Daniel Neumaier

AMO

Vol. November 2018

Graphene field-effect transistors for high frequency applications
San Sebastian, Spain,

Graphene Core Project 1. Graphene-based disruptive technologies (Graphene Flagship)

European Commission (EC) (EC/H2020/696656), 2016-04-01 -- 2018-03-31.

Areas of Advance

Nanoscience and Nanotechnology

Subject Categories

Physical Sciences

Electrical Engineering, Electronic Engineering, Information Engineering

Nano Technology

Infrastructure

Nanofabrication Laboratory

More information

Latest update

2/6/2020 4