Space-based infrared interferometry to study exoplanetary atmospheres
Journal article, 2018

The quest for other habitable worlds and the search for life among them are major goals of modern astronomy. One way to make progress towards these goals is to obtain high-quality spectra of a large number of exoplanets over a broad range of wavelengths. While concepts currently investigated in the United States are focused on visible/NIR wavelengths, where the planets are probed in reflected light, a compelling alternative to characterize planetary atmospheres is the mid-infrared waveband (5–20 μm). Indeed, mid-infrared observations provide key information on the presence of an atmosphere, the surface conditions (e.g., temperature, pressure, habitability), and the atmospheric composition in important species such as H2O, CO2, O3, CH4, and N2O. This information is essential to investigate the potential habitability of exoplanets and to make progress towards the search for life in the Universe. Obtaining high-quality mid-infrared spectra of exoplanets from the ground is however extremely challenging due to the overwhelming brightness and turbulence of the Earth’s atmosphere. In this paper, we present a concept of space-based mid-infrared interferometer that can tackle this observing challenge and discuss the main technological developments required to launch such a sophisticated instrument.

Space interferometer

Infrared astronomy







D. Defrere

University of Liège

A. Léger

University of Paris-Sud

O. Absil

University of Liège

C. Beichman

California Institute of Technology (Caltech)

B. Biller

University of Edinburgh

W. Danchi

NASA Goddard Space Flight Center

K. Ergenzinger

Airbus Group

C. Eiroa

Universidad Autonoma de Madrid (UAM)

S. Ertel

University of Arizona

Malcolm Fridlund

Leiden University

Antonio García Muñoz

Technische Universität Berlin

Michaël Gillon

University of Liège

A. Glasse

UK Astronomy Technology Centre

M. Godolt

Technische Universität Berlin

J. L. Grenfell

German Aerospace Center (DLR)

S. Kraus

University of Exeter

L. Labadie

University of Cologne

S. Lacour

LESIA - Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique

René Liseau

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

G. Martin

Institut de Planetologie et d'Astrophysique de Grenoble

B. Mennesson

Jet Propulsion Laboratory, California Institute of Technology

G. Micela

Istituto nazionale di astrofisica (INAF)

S. Minardi

Leibniz Institute for Astrophysics Potsdam

S. P. Quanz

Swiss Federal Institute of Technology in Zürich (ETH)

H. Rauer

German Aerospace Center (DLR)

Technische Universität Berlin

S. Rinehart

NASA Goddard Space Flight Center

N. C. Santos

University of Porto

F. Selsis

University of Bordeaux

J. Surdej

University of Liège

F. Tian

Tsinghua University

E. Villaver

Universidad Autonoma de Madrid (UAM)

P. J. Wheatley

The University of Warwick

M. Wyatt

University of Cambridge

Experimental Astronomy

0922-6435 (ISSN) 1572-9508 (eISSN)

Vol. 46 3 543-560

Subject Categories

Astronomy, Astrophysics and Cosmology

Interaction Technologies


Onsala Space Observatory



More information

Latest update