Space-based infrared interferometry to study exoplanetary atmospheres
Artikel i vetenskaplig tidskrift, 2018

The quest for other habitable worlds and the search for life among them are major goals of modern astronomy. One way to make progress towards these goals is to obtain high-quality spectra of a large number of exoplanets over a broad range of wavelengths. While concepts currently investigated in the United States are focused on visible/NIR wavelengths, where the planets are probed in reflected light, a compelling alternative to characterize planetary atmospheres is the mid-infrared waveband (5–20 μm). Indeed, mid-infrared observations provide key information on the presence of an atmosphere, the surface conditions (e.g., temperature, pressure, habitability), and the atmospheric composition in important species such as H2O, CO2, O3, CH4, and N2O. This information is essential to investigate the potential habitability of exoplanets and to make progress towards the search for life in the Universe. Obtaining high-quality mid-infrared spectra of exoplanets from the ground is however extremely challenging due to the overwhelming brightness and turbulence of the Earth’s atmosphere. In this paper, we present a concept of space-based mid-infrared interferometer that can tackle this observing challenge and discuss the main technological developments required to launch such a sophisticated instrument.

TPF-I

Darwin

Habitability

Space interferometer

Exoplanet

Infrared astronomy

Bio-signatures

Författare

D. Defrere

Universite de Liège

A. Léger

Université Paris-Sud

O. Absil

Universite de Liège

C. Beichman

California Institute of Technology (Caltech)

B. Biller

University of Edinburgh

W. Danchi

NASA Goddard Space Flight Center

K. Ergenzinger

Airbus Defence and Space GmbH

C. Eiroa

Universidad Autonoma de Madrid (UAM)

S. Ertel

University of Arizona

C.W.M. Fridlund

Universiteit Leiden

Antonio García Muñoz

Technische Universität Berlin

Michaël Gillon

Universite de Liège

A. Glasse

UK Astronomy Technology Centre

M. Godolt

Technische Universität Berlin

J. L. Grenfell

Deutsches Zentrums für Luft- und Raumfahrt (DLR)

S. Kraus

University of Exeter

L. Labadie

Universität zu Köln

S. Lacour

LESIA - Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique

René Liseau

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik, Galaktisk astrofysik

G. Martin

Institut de Planetologie et d'Astrophysique de Grenoble

B. Mennesson

Jet Propulsion Laboratory, California Institute of Technology

G. Micela

Istituto nazionale di astrofisica (INAF)

S. Minardi

Astrophysikalisches Institut Potsdam

S. P. Quanz

Eidgenössische Technische Hochschule Zürich (ETH)

H. Rauer

Technische Universität Berlin

Deutsches Zentrums für Luft- und Raumfahrt (DLR)

S. Rinehart

NASA Goddard Space Flight Center

N. C. Santos

Universidade do Porto

F. Selsis

Université de Bordeaux

J. Surdej

Universite de Liège

F. Tian

Tsinghua University

E. Villaver

Universidad Autonoma de Madrid (UAM)

P. J. Wheatley

The University of Warwick

M. Wyatt

University of Cambridge

Experimental Astronomy

0922-6435 (ISSN) 1572-9508 (eISSN)

Vol. 46 3 543-560

Ämneskategorier

Astronomi, astrofysik och kosmologi

Interaktionsteknik

Infrastruktur

Onsala rymdobservatorium

DOI

10.1007/s10686-018-9613-2

Mer information

Senast uppdaterat

2019-04-04