High Temperature Corrosion of Superheaters in Biomass - and Waste-Fired Boilers: Combat on two fronts
Licentiate thesis, 2019
The aim of this thesis is to increase knowledge on accelerated corrosion in biomass- and waste-fired boilers and to develop solutions that mitigate the corrosion.
In order to increase knowledge on accelerated corrosion in these environments, the corrosiveness of alkali salts (e.g NaCl or KCl) towards stainless steels has been investigated in several laboratory studies. However, a large discrepancy in corrosion attack has been observed between laboratory and field investigations. Therefore, a new setup was developed in laboratory in order to better mimic the boiler environment in a well-controlled manner. The present study involves two commercial stainless steels: 304L (18% Cr – 8% Ni type of alloy) and Sanicro 28 (higher chromium and nickel contents). The exposures were performed under continuous KCl deposition in an environment containing O2 and H2O at 600 °C for 24 hours. The results showed:
- Continuous KCl deposition caused a corrosion attack similar to the attack observed in boilers.
- Continuous KCl deposition accelerated the corrosion attack compared to pre-deposited KCl.
- Regions with large amounts of deposited KCl experienced faster corrosion.
- The alloy with higher chromium and nickel content exhibited an increased corrosion resistance in this environment.
Increasing knowledge on corrosion mechanisms is important for the development of efficient ways of mitigating corrosion. It is possible to mitigate a corrosion attack in two ways: improving the materials or changing the surrounding environment of the materials.
A solution to improving the materials is the utilization of coatings. Three different nickel-based coatings (NiCr, NiAl and NiCrAlY) HVAF (High Velocity Air Fuel)-sprayed onto a low-alloyed steel (16Mo3) were investigated. Their protectiveness was tested in two different environments for boiler purposes: A mildly corrosive environment (O2 + H2O) and a highly corrosive environment (O2 + H2O + KCl). The results showed that the NiCr coating did not remain protective since chlorides were detected within the coating and at the coating/substrate interface. In contrast, NiAl and NiCrAlY coatings performed well in both environments with minor oxidation.
The other approach to mitigating corrosion is changing the surrounding environment of the materials. A field study investigated the potential of a new superheater position in a boiler, predicted with CFD (Computational Fluid Dynamics) calculations. The impact of different operational parameters of the boiler on the deposit composition and amount were tested. The results showed that it is possible to decrease the amount of corrosive species (chlorides) in the deposits by changing the settings of the boiler. Moreover, the corrosion attack of a fixed installation of several superheater materials was investigated after 8000 hours. The analysis focused on 347H (18% Cr – 8% Ni type of alloy) material and revealed a corrosion attack similar to the new setup with continuous KCl deposition in laboratory.
Stainless steel
KCl
Deposits
Waste
Oxidation
Biomass
Ni-based coatings
Author
Julien Phother Simon
Chalmers, Chemistry and Chemical Engineering, Energy and Material
J. Phother-Simon, T. Jonsson, J.Liske Continuous KCl addition in high temperature exposures of 304L – A way to mimic a boiler environment
J. Eklund, J. Phother, E. Sadeghi, S. Joshi, J. Liske High Temperature Corrosion of HVAF-Sprayed Ni-Base Coatings for Boiler Applications
M. Dolores Paz, J. Phother-Simon, L. Mikkelsen, T. Jonsson Increased steam temperature with Steamboost superheater – The effect of the combustion in deposits and high temperature corrosion
Subject Categories
Inorganic Chemistry
Manufacturing, Surface and Joining Technology
Other Materials Engineering
Metallurgy and Metallic Materials
Energy Systems
Corrosion Engineering
Driving Forces
Sustainable development
Areas of Advance
Energy
Materials Science
Infrastructure
Chalmers Materials Analysis Laboratory
Publisher
Chalmers
KB, Kemigården 4
Opponent: Klas Andersson, Professor, Chalmers Department of Space, Earth and Environment, Sweden.