Balancing Scattering Channels: A Panoscopic Approach toward Zero Temperature Coefficient of Resistance Using High-Entropy Alloys
Journal article, 2019

Designing alloys with an accurate temperature-independent electrical response over a wide temperature range, specifically a low temperature coefficient of resistance (TCR), remains a big challenge from a material design point of view. More than a century after their discovery, Constantan (Cu–Ni) and Manganin (Cu–Mn–Ni) alloys remain the top choice for strain gauge applications and high-quality resistors up to 473–573 K. Here, an average TCR is demonstrated that is up to ≈800 times smaller in the temperature range 5–300 K and >800 times smaller than for any of these standard materials over a wide temperature range (5 K < T < 1200 K). This is achieved for selected compositions of AlxCoCrFeNi high-entropy alloys (HEAs), for which a strong correlation of the ultralow TCR is established with the underlying microstructure and its local composition. The exceptionally low electron–phonon coupling expected in these HEAs is crucial for developing novel devices, e.g., hot-electron detectors, high-Q resonant antennas, and materials in gravitational wave detectors.

temperature coefficient of resistance

electrical resistivity

high-entropy alloys

Kondo scattering

microstructure

Author

Samrand Shafeie

Chalmers, Physics, Materials and Surface Theory

Sheng Guo

Chalmers, Industrial and Materials Science, Materials and manufacture

Paul Erhart

Chalmers, Physics, Materials and Surface Theory

Q. Hu

Jiangxi Academy of Sciences

Anders Palmqvist

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Advanced Materials

09359648 (ISSN) 15214095 (eISSN)

Vol. 31 2 1805392

Subject Categories (SSIF 2011)

Ceramics

Other Materials Engineering

Condensed Matter Physics

DOI

10.1002/adma.201805392

PubMed

30407664

More information

Latest update

7/17/2019