Operational Regions of a Multi-Kite AWE System
Paper in proceedings, 2018

Multiple-kite airborne wind energy systems (MAWES) aim to efficiently harvest the stronger, less-intermittent winds at high altitude without material-intensive towers. Solving a series of optimal control problems for two-kite MAWES, we show that pumping-cycle MAWES have three distinct operational regions: Region I, where power is consumed to stay aloft; Region II, where the power harvesting factor grows until the design wind speed; and Region III, where the power extraction is curtailed so as to respect the physical limitations of the system. The actuator disk (AD) method is arguably the simplest tool to model aerodynamic induction effects, though its validity is limited. In this paper, we show that AD is not valid for Region I.

Author

Rachel Leuthold

University of Freiburg

Jochem De Schutter

University of Freiburg

Elena Malz

Chalmers, Electrical Engineering, Systems and control, Automatic Control

Giovanni Licitra

Ampyx Power B.V

University of Freiburg

Sébastien Gros

Chalmers, Electrical Engineering, Systems and control, Automatic Control

Moritz Diehl

University of Freiburg

2018 European Control Conference, ECC 2018

52-57 8550199

16th European Control Conference, ECC 2018
Limassol, Cyprus,

Subject Categories

Energy Engineering

Energy Systems

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.23919/ECC.2018.8550199

More information

Latest update

1/24/2019