Label-free spatio-temporal monitoring of cytosolic mass, osmolarity, and volume in living cells
Journal article, 2019

Microorganisms adapt their biophysical properties in response to changes in their local environment. However, quantifying these changes at the single-cell level has only recently become possible, largely relying on fluorescent labeling strategies. In this work, we utilize yeast (Saccharomyces cerevisiae) to demonstrate label-free quantification of changes in both intracellular osmolarity and macromolecular concentration in response to changes in the local environment. By combining a digital holographic microscope with a millifluidic chip, the temporal response of cellular water flux was successfully isolated from the rate of production of higher molecular weight compounds, in addition to identifying the produced compounds in terms of the product of their refractive index increment (dndc) and molar mass. The ability to identify, quantify and temporally resolve multiple biophysical processes in living cells at the single cell level offers a crucial complement to label-based strategies, suggesting broad applicability in studies of a wide-range of cellular processes.

Author

Daniel Midtvedt

Chalmers, Physics, Biological Physics

Erik Olsén

Chalmers, Physics, Biological Physics

Fredrik Höök

Chalmers, Physics, Biological Physics

Gavin Jeffries

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry

Published in

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 10Issue 1 art. no 340

Categorizing

Subject Categories

Biochemistry and Molecular Biology

Other Physics Topics

Other Basic Medicine

Identifiers

DOI

10.1038/s41467-018-08207-5

PubMed

30664642

More information

Latest update

4/5/2022 9