Optimization of resonant all-dielectric nanoparticles for optical manipulation and light management
Doctoral thesis, 2019
While the most commonly employed nanoparticles are metallic ones with localized plasmonic resonances, these particles suffer from inevitable optical losses and parasitic photothermal heating.
Recently, through the advent of new fabrication techniques, all-dielectric nanoparticles with high refractive index have arisen as a competitive alternative both as colloidal nanoparticles and as building blocks in metasurfaces. These particles present low-loss geometric resonances of electric and magnetic character with Q-factors comparable to plasmonic nanoparticles. Importantly, the various multipolar responses excited in these particles can be engineered to interact and give rise to highly directional scattering or light confinement.
This thesis focuses on the design, modelling and optimization of resonant all-dielectric nanoparticles for nanophotonic applications through electrodynamics simulations such as finite-difference time-domain and various analytical or semi-analytical models.
It is demonstrated that highly specific design of metasurfaces with silicon nanoantennas can yield close to 100% optical absorption at specific light wavelengths. The effect is a result of complete destructive interference between different multipolar excitations and can be achieved despite the low intrinsic losses of silicon.
Further, this effect is exploited to propose a novel solar harvesting device using nanostructured amorphous silicon with theoretically predicted efficiencies that approach state-of-the-art thin film solar cells.
Owing to their significant interaction with light and generally low losses, resonant all-dielectric particles are promising candidates for nanoscopic handles in biological systems. This thesis therefore focuses partly on optical forces and manipulation of silicon nanoparticles. The zero-backscattering Kerker condition is investigated as an avenue to decrease radiation pressure in an optical trap. Moreover, a comparison to more conventional nanoparticle materials for optical tweezers such as gold and polystyrene is made, including photothermal effects. Lastly, the interaction of porous silicon nanoantennas with subwavelength emitters or absorbers is studied and the influence of porosity, pore size, and pore placement is elucidated.
FDTD
Nanophotonics
Metasurfaces
Optical Forces
All-dielectric
Perfect Absorption
Silicon
Author
Nils Odebo Länk
Chalmers, Physics, Bionanophotonics
Large-Scale Silicon Nanophotonic Metasurfaces with Polarization Independent Near-Perfect Absorption
Nano Letters,;Vol. 17(2017)p. 3054-3060
Journal article
Metasurfaces and Colloidal Suspensions Composed of 3D Chiral Si Nanoresonators
Advanced Materials,;Vol. 29(2017)
Journal article
Directional scattering and multipolar contributions to optical forces on silicon nanoparticles in focused laser beams
Optics Express,;Vol. 26(2018)p. 29074-29085
Journal article
Odebo Länk, N, Käll, M, Antosiewicz, T. J. Electromagnetic energy distribution in resonant quasi porous silicon nanostructures
Vismara, R, Odebo Länk, N, Verre, R, Käll, M, Isabella, O, Zeman, M. Solar harvesting based on all-dielectric perfect absorbing metasurfaces
Odebo Länk, N, Johansson, P, Käll, M. Thermal effects and trap stability for nanoparticle spheres in an optical trap
Denna avhandling utforskar växelverkan mellan ljus och materia på nanoskala. För att sätta storleken i perspektiv så handlar det om strukturer som är ungefär 1000 gånger mindre än tjockleken på ett hårstrå. Intressanta effekter kan dyka upp när synligt ljus växelverkar med partiklar kring dessa storlekar. Beroende på partikelns material ter sig denna växelverkan annorlunda och kan ge upphov till många användbara effekter. I forskningen som ligger till grund för denna avhandling har fokus legat på nanopartiklar gjorda av kisel vilka interagerar starkt med synligt ljus. Geometrin hos partiklarna samt deras arrangemang påverkar hur de reflekterar, sprider och absorberar ljus och medveten design av dessa kan öppna upp intressanta och användbara möjligheter. Två exempel bland många på det vi har utforskat är förhöjd absorption som potentiellt kan leda till effektivare solceller på sikt, samt optisk infångning av kiselnanopartiklar som kan hitta tillämpningar i till exempel cellbiologisk forskning.
NILS ODEBO LÄNK
Funktionella elektromagnetiska metamaterial & optisk sensing
Swedish Foundation for Strategic Research (SSF) (RMA11-0037), 2012-08-01 -- 2017-09-30.
Areas of Advance
Nanoscience and Nanotechnology (SO 2010-2017, EI 2018-)
Roots
Basic sciences
Subject Categories (SSIF 2011)
Atom and Molecular Physics and Optics
Other Physics Topics
Nano Technology
Condensed Matter Physics
Infrastructure
Chalmers Materials Analysis Laboratory
Nanofabrication Laboratory
ISBN
978-91-7597-883-3
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4564
Publisher
Chalmers
PJ-salen, Fysikgården 1
Opponent: Prof. Nicolas Bonod, Institut Fresnel CNRS, Aix-Marseille Université, Marseille, France