Thoracic aortic geometry correlates with endograft bird-beaking severity
Journal article, 2020
Objective: Aortic geometry has been shown to influence the development of endograft malapposition (bird-beaking) in thoracic endovascular aortic repair (TEVAR), but the extent of this relationship lacks clarity. The aim of this study was to develop a reproducible method of measuring bird-beak severity and to investigate preoperative geometry associated with bird-beaking. Methods: The study retrospectively analyzed 20 patients with thoracic aortic aneurysms or type B dissections treated with TEVAR. Computed tomography scans were used to construct three-dimensional geometric models of the preoperative and postoperative aorta and endograft. Postoperative bird-beaking was quantified with length, height, and angle; categorized into a bird-beak group (BBG; n = 10) and no bird-beak group (NBBG; n = 10) using bird-beak height ≥5 mm as a threshold; and correlated to preoperative metrics including aortic cross-sectional area, inner curvature, diameter, and inner curvature × diameter as well as graft diameter and oversizing at the proximal landing zone. Results: Aortic area (1002 ± 118 mm2 vs 834 ± 248 mm2), inner curvature (0.040 ± 0.014 mm−1 vs 0.031 ± 0.012 mm−1), and diameter (35.7 ± 2.1 mm vs 32.2 ± 4.9 mm) were not significantly different between BBG and NBBG; however, inner curvature × diameter was significantly higher in BBG (1.4 ± 0.5 vs 1.0 ± 0.3; P =.030). Inner curvature and curvature × diameter were significantly correlated with bird-beak height (R = 0.462, P =.041; R = 0.592, P =.006) and bird-beak angle (R = 0.680, P <.001; R = 0.712, P <.001). Conclusions: TEVAR bird-beak severity can be quantified and predicted with geometric modeling techniques, and the combination of high preoperative aortic inner curvature and diameter increases the risk for development of TEVAR bird-beaking.
Endograft
Bird beak configuration
Thoracic endovascular aortic repair
Aortic arch
Endoleak