Volterra type integration operators from Bergman spaces to Hardy spaces
Journal article, 2020

We completely characterize the boundedness of the Volterra type integration operators Jb acting from the weighted Bergman spaces Aαp to the Hardy spaces Hq of the unit ball of Cn for all 0<p,q<∞. A partial solution to the case n=1 was previously obtained by Z. Wu in [35]. We solve the cases left open there and extend all the results to the setting of arbitrary complex dimension n. Our tools involve area methods from harmonic analysis, Carleson measures and Kahane-Khinchine type inequalities, factorization tricks for tent spaces of sequences, as well as techniques and integral estimates related to Hardy and Bergman spaces.

Bergman space

Tent spaces

Integration operator

Hardy space

Author

Santeri Miihkinen

Åbo Akademi

Jordi Pau

University of Barcelona

Antti Perälä

Chalmers, Mathematical Sciences, Analysis and Probability Theory

Maofa Wang

Wuhan University

Journal of Functional Analysis

0022-1236 (ISSN) 1096-0783 (eISSN)

Vol. 279 4 108564

Subject Categories

Mathematical Analysis

DOI

10.1016/j.jfa.2020.108564

More information

Latest update

9/11/2024