Volterra type integration operators from Bergman spaces to Hardy spaces
Artikel i vetenskaplig tidskrift, 2020

We completely characterize the boundedness of the Volterra type integration operators Jb acting from the weighted Bergman spaces Aαp to the Hardy spaces Hq of the unit ball of Cn for all 0<p,q<∞. A partial solution to the case n=1 was previously obtained by Z. Wu in [35]. We solve the cases left open there and extend all the results to the setting of arbitrary complex dimension n. Our tools involve area methods from harmonic analysis, Carleson measures and Kahane-Khinchine type inequalities, factorization tricks for tent spaces of sequences, as well as techniques and integral estimates related to Hardy and Bergman spaces.

Integration operator

Hardy space

Tent spaces

Bergman space

Författare

Santeri Miihkinen

Åbo Akademi

Jordi Pau

Universitat de Barcelona

Antti Perälä

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Maofa Wang

Wuhan University

Journal of Functional Analysis

0022-1236 (ISSN) 1096-0783 (eISSN)

Vol. In press 108564

Ämneskategorier

Matematisk analys

DOI

10.1016/j.jfa.2020.108564

Mer information

Senast uppdaterat

2020-04-29