Microwave and submillimeter wave scattering of oriented ice particles
Journal article, 2020

Microwave (1-300GHz) dual-polarization measurements above 100GHz are so far sparse, but they consistently show polarized scattering signals of ice clouds. Existing scattering databases of realistically shaped ice crystals for microwaves and submillimeter waves (> 300GHz) typically assume total random orientation, which cannot explain the polarized signals. Conceptual models show that the polarization signals are caused by oriented ice particles. Only a few works that consider oriented ice crystals exist, but they are limited to microwaves only. Assuming azimuthally randomly oriented ice particles with a fixed but arbitrary tilt angle, we produced scattering data for two particle habits (51 hexagonal plates and 18 plate aggregates), 35 frequencies between 1 and 864GHz, and 3 temperatures (190, 230 and 270K). In general, the scattering data of azimuthally randomly oriented particles depend on the incidence angle and two scattering angles, in contrast to total random orientation, which depends on a single angle. The additional tilt angle further increases the complexity. The simulations are based on the discrete dipole approximation in combination with a self-developed orientation averaging approach. The scattering data are publicly available from Zenodo (https://doi.org/10.5281/zenodo.3463003). This effort is also an essential part of preparing for the upcoming Ice Cloud Imager (ICI) that will perform polarized observations at 243 and 664GHz. Using our scattering data radiative transfer simulations with two liquid hydrometeor species and four frozen hydrometeor species of polarized Global Precipitation Measurement (GPM) Microwave Imager (GMI) observations at 166GHz were conducted. The simulations recreate the observed polarization patterns. For slightly fluttering snow and ice particles, the simulations show polarization differences up to 11K using plate aggregates for snow, hexagonal plates for cloud ice and totally randomly oriented particles for the remaining species. Simulations using strongly fluttering hexagonal plates for snow and ice show similar polarization signals. Orientation, shape and the hydrometeor composition affect the polarization. Ignoring orientation can cause a negative bias for vertically polarized observations and a positive bias for horizontally polarized observations.


Manfred Brath

Universität Hamburg

Robin Nils Ekelund

Chalmers, Space, Earth and Environment, Microwave and Optical Remote Sensing

Patrick Eriksson

Chalmers, Space, Earth and Environment, Microwave and Optical Remote Sensing

Oliver Lemke

Universität Hamburg

Stefan A. Buehler

Universität Hamburg

Atmospheric Measurement Techniques

1867-1381 (ISSN) 1867-8548 (eISSN)

Vol. 13 5 2309-2333

Subject Categories

Meteorology and Atmospheric Sciences

Atom and Molecular Physics and Optics

Other Physics Topics



More information

Latest update