Thin-film ultraviolet light-emitting diodes realized by electrochemical etching of AlGaN
Doctoral thesis, 2020
In this work, we demonstrate a new device platform to realize UV LEDs with a TFFC design based on electrochemical etching to remove the substrate. In the first part of this work, electrochemical (EC) etching of AlGaN layers with a high Al content up to 50% was demonstrated, which enabled the separation of epitaxial LED layers from their substrate while maintaining the high quality of the active region.
The second key technological step was the integration of EC etching in a standard UV LED fabrication process, which required protection schemes to prevent parasitic electrochemical etching of the LED structure and the development of a device design compatible with flip-chip bonding. Finally, this work was completed by the first demonstration of a TFFC UVB LED using electrochemical etching.
thin-film flip-chip
light-emitting diodes
UVB
AlGaN
thermocompression bonding
substrate removal
ultraviolet light
electrochemical etching
heterogeneous integration
LEDs
Author
Michael Alexander Bergmann
Chalmers, Microtechnology and Nanoscience (MC2), Photonics
Electrochemical etching of AlGaN for the realization of thin-film devices
Applied Physics Letters,;Vol. 115(2019)p. 182103-
Journal article
Thin-film flip-chip UVB LEDs realized by electrochemical etching
Applied Physics Letters,;Vol. 116(2020)p. 121101-
Journal article
Increased Light Extraction of Thin-Film Flip-Chip UVB LEDs by Surface Texturing
ACS Photonics,;Vol. 10(2023)p. 368-373
Journal article
Areas of Advance
Nanoscience and Nanotechnology
Subject Categories (SSIF 2011)
Atom and Molecular Physics and Optics
Other Physics Topics
Nano Technology
Condensed Matter Physics
Infrastructure
Chalmers Materials Analysis Laboratory
Nanofabrication Laboratory
ISBN
978-91-7905-368-0
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4835
Publisher
Chalmers
A423 (Kollektorn) at the Department of Microtechnology and Nanoscience (MC2), Kemivägen 9, Gothenburg
Opponent: Prof. Jung Han, Department of Electrical Engineering, Yale University, USA