Effect of Renewable Fuel Blends on PN and SPN Emissions in a GDI Engine
Journal article, 2020

To characterize the effects of renewable fuels on particulate emissions from GDI engines, engine experiments were conducted using EN228-compliant gasoline fuel blends containing no oxygenates, 10% ethanol (EtOH), or 22% ethyl tert-butyl ether (ETBE). The experiments were conducted in a single cylinder GDI engine using a 6-hole fuel injector operated at 200 bar injection pressure. Both PN in raw exhaust and solid PN (SPN) were measured at two load points and various start of injection (SOI) timings. Raw PN and SPN results were classified into various size ranges, corresponding to current and future legislations. At early SOI timings, where particulate formation is dominated by diffusion flames on the piston due to liquid film, the oxygenated blends yielded dramatically higher PN and SPN emissions than reference gasoline because of fuel effects. For particulates >23 nm and with optimized SOI timing, the use of oxygenated blends significantly increases SPN and conversely decreases raw PN emissions at low load (4.5 bar IMEP). At high load (9 bar IMEP), overall SPN emissions were significantly higher and there were no clear differences between the blends. Additionally, SPN measurements showed that soot formation and emissions of volatile organic compounds (VOC) depended strongly on blend composition. Finally, adding oxygenates (up to 22%) to gasoline did not reduce emissions of SPN in the size ranges addressed by current regulations.

Renewable fuels

ethanol blends

oxygenated blends

start of injection

particulate matter

volatile organic compounds

Author

Sreelekha Etikyala

Chalmers, Mechanics and Maritime Sciences, Combustion and Propulsion Systems, Engines and Propulsion Systems

Lucien Koopmans

Chalmers, Mechanics and Maritime Sciences, Combustion and Propulsion Systems

Petter Dahlander

Chalmers, Mechanics and Maritime Sciences, Combustion and Propulsion Systems, Engines and Propulsion Systems

SAE Technical Papers

0148-7191 (ISSN)

2020

Subject Categories

Applied Mechanics

Energy Engineering

Chemical Process Engineering

Other Chemical Engineering

Bioenergy

DOI

10.4271/2020-01-2199

More information

Latest update

11/10/2020