Pruning and Quantizing Neural Belief Propagation Decoders
Journal article, 2021
Belief propagation
neural decoders
quantization
min-sum decoding
deep learning
pruning
Author
Andreas Buchberger
Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks
Christian Häger
Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks
Henry D. Pfister
Duke University
Laurent Schmalen
Karlsruhe Institute of Technology (KIT)
Alexandre Graell I Amat
Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks
IEEE Journal on Selected Areas in Communications
0733-8716 (ISSN) 15580008 (eISSN)
Vol. 39 7 1957-1966 9281328Coding for Optical communications In the Nonlinear regime (COIN)
European Commission (EC) (EC/H2020/676448), 2016-03-01 -- 2020-02-28.
Coding for terabit-per-second fiber-optical communications (TERA)
European Commission (EC) (EC/H2020/749798), 2017-01-01 -- 2019-12-31.
Rethinking Distributed Storage for Data Storage and Wireless Content Delivery
Swedish Research Council (VR) (2016-04253), 2016-01-01 -- 2019-12-31.
Areas of Advance
Information and Communication Technology
Subject Categories
Telecommunications
Communication Systems
Signal Processing
DOI
10.1109/JSAC.2020.3041392