Christian Häger

Assistant Professor at Communication Systems

Christian Häger is a researcher (forskare) in the Communication Systems research group. He received the Dipl.-Ing. degree (M.Sc. equivalent) in electrical engineering from Ulm University, Germany, in 2011 and his Ph.D. degree in communication theory from Chalmers University of Technology, Sweden, in 2016. From 2016 until 2019, he was a postdoctoral researcher at the Department of Electrical and Computer Engineering at Duke University, USA. Since 2017, he is a postdoctoral researcher at the Department of Electrical Engineering at Chalmers University of Technology. His research interests include modern coding theory, fiber-optic communications, and machine learning. He received the Marie Sklodowska-Curie Global Fellowship from the European Commission in 2017.

Personal web page: www.christianhaeger.de

Source: chalmers.se
Image of Christian Häger

Showing 40 publications

2021

Physics-Based Deep Learning for Fiber-Optic Communication Systems

Christian Häger, Henry D. Pfister
IEEE Journal on Selected Areas in Communications. Vol. 39 (1), p. 280-294
Journal article
2021

Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation

Rick M. Butler, Christian Häger, Henry D. Pfister et al
Journal of Lightwave Technology. Vol. 39 (4), p. 949-959
Journal article
2020

Decoding Reed-Muller Codes Using Redundant Code Constraints

Mengke Lian, Christian Häger, Henry D. Pfister
IEEE International Symposium on Information Theory - Proceedings, p. 42-47
Paper in proceeding
2020

Pruning Neural Belief Propagation Decoders

Andreas Buchberger, Christian Häger, Henry D. Pfister et al
IEEE International Symposium on Information Theory - Proceedings. Vol. 2020-June, p. 338-342
Paper in proceeding
2020

Pruning and Quantizing Neural Belief Propagation Decoders

Andreas Buchberger, Christian Häger, Henry D. Pfister et al
IEEE Journal on Selected Areas in Communications. Vol. In Press
Journal article
2020

Learning Physical-Layer Communication with Quantized Feedback

Jinxiang Song, Bile Peng, Christian Häger et al
IEEE Transactions on Communications. Vol. 68 (1), p. 645-653
Journal article
2020

Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation

Christian Häger, Henry D. Pfister, Rick M. Bütler et al
Optical Fiber Communication Conference (OFC) 2020
Paper in proceeding
2020

Revisiting Efficient Multi-Step Nonlinearity Compensation with Machine Learning: An Experimental Demonstration

Vinícius Oliari, Sebastiaan Goossens, Christian Häger et al
Journal of Lightwave Technology. Vol. 38 (12), p. 3114-3124
Journal article
2020

Benchmarking End-to-end Learning of MIMO Physical-Layer Communication

Jinxiang Song, Christian Häger, Jochen Schröder et al
2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
Paper in proceeding
2020

End-to-End Learning of Geometrical Shaping Maximizing Generalized Mutual Information

Kadir Gümüş, Alex Alvarado, Bin Chen et al
Optical Fiber Communication Conference (OFC) 2020, OSA Technical Digest
Paper in proceeding
2019

On Low-Complexity Decoding of Product Codes for High-Throughput Fiber-Optic Systems

Alireza Sheikh, Alexandre Graell i Amat, Gianluigi Liva et al
IEEE International Symposium on Turbo Codes & Iterative Information Processing (ISTC). Invited paper
Paper in proceeding
2019

What Can Machine Learning Teach Us about Communications

Mengke Lian, Christian Häger, Henry D. Pfister
IEEE International Symposium on Information Theory - Proceedings. Vol. 15 January 2019
Paper in proceeding
2019

Revisiting Multi-Step Nonlinearity Compensation with Machine Learning

Christian Häger, Henry D. Pfister, Rick M. Bütler et al
European Conference on Optical Communication (ECOC)
Paper in proceeding
2019

Learned Belief-Propagation Decoding with Simple Scaling and SNR Adaptation

Mengke Lian, Fabrizio Carpi, Christian Häger et al
IEEE International Symposium on Information Theory - Proceedings. Vol. 2019 (July), p. 161-165
Paper in proceeding
2019

Reinforcement Learning for Channel Coding: Learned Bit-Flipping Decoding

Fabrizio Carpi, Christian Häger, Marco Martalò et al
Annual Allerton Conf. on Communication, Control, and Computing, p. 922-929
Paper in proceeding
2018

Achievable Information Rates for Nonlinear Fiber Communication via End-to-end Autoencoder Learning

Shen Li, Christian Häger, Nil Garcia et al
2018 European Conference on Optical Communication (ECOC). Vol. 2018-September
Paper in proceeding
2018

Deep Learning of the Nonlinear Schrödinger Equation in Fiber-Optic Communications

Christian Häger, Henry D. Pfister
IEEE International Symposium on Information Theory - Proceedings. Vol. 2018-June, p. 1590-1594
Paper in proceeding
2018

Miscorrection-free Decoding of Staircase Codes

Christian Häger, Henry D. Pfister
European Conference on Optical Communication, ECOC. Vol. 2017-September, p. 1-3
Paper in proceeding
2018

Approaching Miscorrection-Free Performance of Product Codes with Anchor Decoding

Christian Häger, Henry D. Pfister
IEEE Transactions on Communications. Vol. 66 (7), p. 2797-2808
Journal article
2018

Nonlinear Interference Mitigation via Deep Neural Networks

Christian Häger, Henry D. Pfister
Proc. Optical Fiber Communication Conf. and Exposition (OFC), p. 1-3
Paper in proceeding
2018

Wideband Time-Domain Digital Backpropagation via Subband Processing and Deep learning

Christian Häger, Henry D. Pfister
2018 European Conference on Optical Communication (ECOC). Vol. 2018-September
Paper in proceeding
2018

ASIC Implementation of Time-Domain Digital Backpropagation with Deep-Learned Chromatic Dispersion Filters

Christoffer Fougstedt, Christian Häger, Lars Svensson et al
2018 European Conference on Optical Communication (ECOC). Vol. 2018-September
Paper in proceeding
2018

Decoding Reed-Muller Codes Using Minimum- Weight Parity Checks

Elia Santi, Christian Häger, Henry D. Pfister
IEEE International Symposium on Information Theory - Proceedings. Vol. 2018-June, p. 1296-1300
Paper in proceeding
2017

Density Evolution for Deterministic Generalized Product Codes on the Binary Erasure Channel at High Rates

Christian Häger, Henry D. Pfister, Alexandre Graell i Amat et al
IEEE Transactions on Information Theory. Vol. 63 (7), p. 4357-4378
Journal article
2016

Density Evolution and Error Floor Analysis for Staircase and Braided Codes

Christian Häger, Henry D. Pfister, Alexandre Graell i Amat et al
Proc. Optical Fiber Communication Conf. and Exposition (OFC)
Paper in proceeding
2016

On the Information Loss of the Max-Log Approximation in BICM Systems

Mikhail Ivanov, Christian Häger, Fredrik Brännström et al
IEEE Transactions on Information Theory. Vol. 62 (6), p. 3011 - 3025
Journal article
2016

A Deterministic Construction and Density Evolution Analysis for Generalized Product Codes

Christian Häger, Henry D. Pfister, Alexandre Graell i Amat et al
Other conference contribution
2016

Deterministic and Ensemble-Based Spatially-Coupled Product Codes

Christian Häger, Henry D. Pfister, Alexandre Graell i Amat et al
IEEE International Symposium on Information Theory - Proceedings, p. 2114-2118
Paper in proceeding
2016

Density Evolution for Deterministic Generalized Product Codes with Higher-Order Modulation

Christian Häger, Alexandre Graell i Amat, Henry D. Pfister et al
International Symposium on Turbo Codes and Iterative Information Processing, ISTC, p. 236-240
Paper in proceeding
2015

Spatially-Coupled Codes for Optical Communications: State-of-the-Art and Open Problems

Alexandre Graell i Amat, Christian Häger, Fredrik Brännström et al
20th OptoElectronics and Communications Conference, OECC 2015, p. Art. no. 7340116-
Paper in proceeding
2015

Terminated and Tailbiting Spatially-Coupled Codes with Optimized Bit Mappings for Spectrally Efficient Fiber-Optical Systems

Christian Häger, Alexandre Graell i Amat, Fredrik Brännström et al
Journal of Lightwave Technology. Vol. 33 (7), p. 1275-1285
Journal article
2015

On Parameter Optimization for Staircase Codes

Christian Häger, Alexandre Graell i Amat, Henry D. Pfister et al
Proc. Optical Fiber Communication Conference and Exposition (OFC)
Paper in proceeding
2014

Optimized Bit Mappings for Spatially Coupled LDPC Codes over Parallel Binary Erasure Channels

Christian Häger, Alexandre Graell i Amat, Alex Alvarado et al
Proc. 1st IEEE International Conference on Communications (ICC), p. 2064-2069
Paper in proceeding
2014

Improving soft FEC performance for higher-order modulations via optimized bit channel mappings

Christian Häger, Alexandre Graell i Amat, Fredrik Brännström et al
Optics Express. Vol. 22 (12), p. 14544-14558
Journal article
2014

Comparison of Terminated and Tailbiting Spatially Coupled LDPC Codes With Optimized Bit Mapping for PM-64-QAM

Christian Häger, Alexandre Graell i Amat, Fredrik Brännström et al
2014 European Conference on Optical Communication, ECOC 2014; Cannes; France; 21 September 2014 through 25 September 2014, p. Art. no. 6964047-
Paper in proceeding
2014

A Low-Complexity Detector for Memoryless Polarization-Multiplexed Fiber-Optical Channels

Christian Häger, Lotfollah Beygi, Erik Agrell et al
IEEE Communications Letters. Vol. 18 (2), p. 368-371
Journal article
2013

Design of APSK Constellations for Coherent Optical Channels with Nonlinear Phase Noise

Christian Häger, Alexandre Graell i Amat, Alex Alvarado et al
IEEE Transactions on Communications. Vol. 61 (8), p. 3362-3373
Journal article
2012

Constellation Optimization for Coherent Optical Channels Distorted by Nonlinear Phase Noise

Christian Häger, Alexandre Graell i Amat, Alex Alvarado et al
Proc. IEEE Global Communications Conference (GLOBECOM) 2012, p. 2870-2875
Paper in proceeding

Download publication list

You can download this list to your computer.

Filter and download publication list

As logged in user (Chalmers employee) you find more export functions in MyResearch.

You may also import these directly to Zotero or Mendeley by using a browser plugin. These are found herer:

Zotero Connector
Mendeley Web Importer

Showing 2 research projects

2021–2023

6G Artificial Intelligence Radar

Henk Wymeersch Communication Systems
Lennart Svensson Signal Processing
Christian Häger Communication Systems
Juliano Pinto Signal Processing
Chalmers AI Research Centre

2021–2024

Physics-Based Deep Learning for Optical Data Transmission and Distributed Sensing

Christian Häger Communication Systems
Swedish Research Council (VR)

There might be more projects where Christian Häger participates, but you have to be logged in as a Chalmers employee to see them.