Machine learning opportunities for integrated polarization sensing and communication in optical fibers
Journal article, 2025
Polarization sensing
Variational autoencoders
Machine learning
End-to-end autoencoders
Physics-based learning
Author
Andrej Rode
Karlsruhe Institute of Technology (KIT)
Mohammad Farsi
Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks
Vincent Lauinger
Karlsruhe Institute of Technology (KIT)
Magnus Karlsson
Chalmers, Microtechnology and Nanoscience (MC2), Photonics
Erik Agrell
Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks
Laurent Schmalen
Karlsruhe Institute of Technology (KIT)
Christian Häger
Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks
Optical Fiber Technology
1068-5200 (ISSN) 1095-9912 (eISSN)
Vol. 90 104047Unlocking the Full-dimensional Fiber Capacity
Knut and Alice Wallenberg Foundation (KAW 2018.0090), 2019-07-01 -- 2024-06-30.
Physics-Based Deep Learning for Optical Data Transmission and Distributed Sensing
Swedish Research Council (VR) (2020-04718), 2021-01-01 -- 2024-12-31.
Subject Categories (SSIF 2011)
Telecommunications
Communication Systems
Signal Processing
DOI
10.1016/j.yofte.2024.104047