Machine learning opportunities for integrated polarization sensing and communication in optical fibers
Artikel i vetenskaplig tidskrift, 2025

As the bedrock of the Internet, optical fibers are ubiquitously deployed and historically dedicated to ensuring robust data transmission. Leveraging their extensive installation, recent endeavors have focused on utilizing these telecommunication fibers also for environmental sensing, exploiting their inherent sensitivity to various environmental disturbances. In this paper, we consider integrated sensing and communication (ISAC) systems that combine data transmission and sensing functionalities, by monitoring the state of polarization to detect environmental changes. In particular, we investigate various machine learning techniques to enhance the performance and capabilities of such polarization-based ISAC systems. Gradient-based techniques such as adaptive zero-forcing equalization are examined for their potential to enhance sensing accuracy at the expense of communication performance, with strategies discussed for mitigating this trade-off. Additionally, the paper reviews novel machine-learning-based approaches for blind channel estimation using variational autoencoders, aimed at improving channel estimates compared to traditional adaptive equalization methods. We also discuss the problem of distributed polarization sensing and review a recent physics-based learning approach for Jones matrix factorization, potentially enabling spatial resolution of sensed events. Lastly, we discuss the potential of leveraging dual-functional autoencoders to optimize ISAC transmitters and the corresponding transmit waveforms. Our paper underscores the potential of telecom fibers for joint data transmission and environmental sensing, facilitated by advancements in digital signal processing and machine learning.

Polarization sensing

Variational autoencoders

Machine learning

End-to-end autoencoders

Physics-based learning

Författare

Andrej Rode

Karlsruher Institut für Technologie (KIT)

Mohammad Farsi

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Vincent Lauinger

Karlsruher Institut für Technologie (KIT)

Magnus Karlsson

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Erik Agrell

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Laurent Schmalen

Karlsruher Institut für Technologie (KIT)

Christian Häger

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Optical Fiber Technology

1068-5200 (ISSN) 1095-9912 (eISSN)

Vol. 90 104047

Frigöra full fiberoptisk kapacitet

Knut och Alice Wallenbergs Stiftelse (KAW 2018.0090), 2019-07-01 -- 2024-06-30.

Fysikbaserad djupinlärning för optisk dataöverföring och distribuerad avkänning

Vetenskapsrådet (VR) (2020-04718), 2021-01-01 -- 2024-12-31.

Ämneskategorier

Telekommunikation

Kommunikationssystem

Signalbehandling

DOI

10.1016/j.yofte.2024.104047

Mer information

Senast uppdaterat

2024-12-17