Christian Häger

Forskarassistent vid Kommunikationssystem

Christian Häger är forskarassistent i forskargruppen Kommunikationssystem. Hans forskning inkluderar digital kommunikation, maskininlärning, och kanalkodnings-teori.

Personlig hemsida: www.christianhaeger.de

Källa: chalmers.se
Image of Christian Häger

Visar 73 publikationer

2024

Learning Gradient-Based Feed-Forward Equalizer for VCSELs

Muralikrishnan Srinivasan, Alireza Pourafzal, Stavros Giannakopoulos et al
Photonics. Vol. 11 (10)
Artikel i vetenskaplig tidskrift
2024

Semi-Supervised End-to-End Learning for Integrated Sensing and Communications

José Miguel Mateos Ramos, Baptiste Chatelier, Christian Häger et al
2024 IEEE International Conference on Machine Learning for Communication and Networking, ICMLCN 2024, p. 132-138
Paper i proceeding
2024

Belief Propagation Decoding of Quantum LDPC Codes with Guided Decimation

Hanwen Yao, Waleed Abu Laban, Christian Häger et al
IEEE International Symposium on Information Theory - Proceedings, p. 2478-2483
Paper i proceeding
2024

Learning to Extract Distributed Polarization Sensing Data from Noisy Jones Matrices

Mohammad Farsi, Christian Häger, Magnus Karlsson et al
2024 Optical Fiber Communication Conference and Exhibition, OFC 2024 - Proceeding
Paper i proceeding
2024

Deep-Learning-Based Channel Estimation for Distributed MIMO with 1-bit Radio-Over-Fiber Fronthaul

Alireza Bordbar, Lise Aabel, Christian Häger et al
Proceedings of the International Symposium on Wireless Communication Systems
Paper i proceeding
2024

Real-Time Implementation of Machine-Learning DSP

Erik Börjeson, Keren Liu, Christian Häger et al
2024 Optical Fiber Communications Conference and Exhibition, OFC 2024 - Proceedings
Paper i proceeding
2024

Usage of Physics-Informed Neural Network to Extract Physical Parameters from High Voltage Experiments

Olof Hjortstam, Carl-Johan Björnson, Felix Ågren et al
Proceedings of the 2024 IEEE 5th International Conference on Dielectrics, ICD 2024
Paper i proceeding
2023

Spatial Signal Design for Positioning via End-to-End Learning

Steven Rivetti, José Miguel Mateos Ramos, Yibo Wu et al
IEEE Wireless Communications Letters. Vol. 12 (3), p. 525-529
Artikel i vetenskaplig tidskrift
2023

End-to-End Learning for VCSEL-based Optical Interconnects: State-of-the-Art, Challenges, and Opportunities

Muralikrishnan Srinivasan, Jinxiang Song, Alexander Grabowski et al
Journal of Lightwave Technology. Vol. 41 (11), p. 3261-3277
Artikel i vetenskaplig tidskrift
2023

Blind Frequency-Domain Equalization Using Vector-Quantized Variational Autoencoders

Jinxiang Song, Vincent Lauinger, Christian Häger et al
IET Conference Proceedings. Vol. 2023 (34), p. 1222-1225
Artikel i vetenskaplig tidskrift
2023

FPGA Implementation of Multi-Layer Machine Learning Equalizer with On-Chip Training

Keren Liu, Erik Börjeson, Christian Häger et al
2023 Optical Fiber Communications Conference and Exhibition, OFC 2023 - Proceedings
Paper i proceeding
2023

Rateless Autoencoder Codes: Trading off Decoding Delay and Reliability

Vukan Ninkovic, Dejan Vukobratovic, Christian Häger et al
IEEE International Conference on Communications. Vol. 2023-May, p. 6361-6366
Paper i proceeding
2023

Model-Driven End-to-End Learning for Integrated Sensing and Communication

José Miguel Mateos Ramos, Christian Häger, Musa Furkan Keskin et al
IEEE International Conference on Communications. Vol. 2023-May, p. 5695-5700
Paper i proceeding
2023

Physics-Informed Neural Networks for Studying Charge Dynamics in Air

Olof Hjortstam, Árni Konrádsson, Yuriy Serdyuk et al
Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP
Paper i proceeding
2023

Model-based end-to-end learning for multi-target integrated sensing and communication

José Miguel Mateos Ramos, Christian Häger, Musa Furkan Keskin et al
Preprint
2023

Blind Frequency-Domain Equalization Using Vector-Quantized Variational Autoencoders

Jinxiang Song, Vincent Lauinger, Christian Häger et al
2023 European Conference on Optical Communications, ECOC 2023. Vol. In press
Paper i proceeding
2022

Improved Polarization Tracking in the Presence of PDL

Mohammad Farsi, Christian Häger, Magnus Karlsson et al
European Conference on Optical Communication, ECOC
Paper i proceeding
2022

FPGA-based Optical Kerr Effect Emulator

Keren Liu, Erik Börjeson, Christian Häger et al
Optics InfoBase Conference Papers
Paper i proceeding
2022

End-to-End Learning for Integrated Sensing and Communication

José Miguel Mateos Ramos, Jinxiang Song, Yibo Wu et al
IEEE International Conference on Communications. Vol. 2022-May, p. 1942-1947
Paper i proceeding
2022

Experimental Demonstration of Learned Pulse Shaping Filter for Superchannels

Zonglong He, Jinxiang Song, Christian Häger et al
2022 Optical Fiber Communications Conference and Exhibition, OFC 2022 - Proceedings
Paper i proceeding
2022

Data-Driven Estimation of Capacity Upper Bounds

Christian Häger, Erik Agrell
IEEE Communications Letters. Vol. 26
Artikel i vetenskaplig tidskrift
2022

Learning Optimal PAM Levels for VCSEL-based Optical Interconnects

Muralikrishnan Srinivasan, Jinxiang Song, Christian Häger et al
2022 European Conference on Optical Communication, ECOC 2022
Paper i proceeding
2022

Symbol-Based Over-the-Air Digital Predistortion Using Reinforcement Learning

Yibo Wu, Jinxiang Song, Christian Häger et al
IEEE International Conference on Communications. Vol. 2022-May, p. 2615-2620
Paper i proceeding
2022

Model-Based End-to-End Learning for WDM Systems With Transceiver Hardware Impairments

Jinxiang Song, Christian Häger, Jochen Schröder et al
IEEE Journal of Selected Topics in Quantum Electronics. Vol. 28 (4)
Artikel i vetenskaplig tidskrift
2022

Polarization Tracking in the Presence of PDL and Fast Temporal Drift

Mohammad Farsi, Christian Häger, Magnus Karlsson et al
Journal of Lightwave Technology. Vol. 40 (19), p. 6408-6416
Artikel i vetenskaplig tidskrift
2022

Periodicity-Enabled Size Reduction of Symbol Based Predistortion for High-Order QAM

Zonglong He, Jinxiang Song, Kovendhan Vijayan et al
Journal of Lightwave Technology. Vol. 40 (18), p. 6168-6178
Artikel i vetenskaplig tidskrift
2022

Machine learning for long-haul optical systems

Shaoliang Zhang, Christian Häger
Machine Learning for Future Fiber-Optic Communication Systems, p. 43-64
Kapitel i bok
2022

Benchmarking and Interpreting End-to-end Learning of MIMO and Multi-User Communication

Jinxiang Song, Christian Häger, Jochen Schröder et al
IEEE Transactions on Wireless Communications. Vol. 21 (9), p. 7287-7298
Artikel i vetenskaplig tidskrift
2021

Pruning and Quantizing Neural Belief Propagation Decoders

Andreas Buchberger, Christian Häger, Henry D. Pfister et al
IEEE Journal on Selected Areas in Communications. Vol. 39 (7), p. 1957-1966
Artikel i vetenskaplig tidskrift
2021

Autoencoder-Based Unequal Error Protection Codes

Vukan Ninkovic, Dejan Vukobratovic, Christian Häger et al
IEEE Communications Letters. Vol. 25 (11), p. 3575-3579
Artikel i vetenskaplig tidskrift
2021

Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation

Rick M. Butler, Christian Häger, Henry D. Pfister et al
Journal of Lightwave Technology. Vol. 39 (4), p. 949-959
Artikel i vetenskaplig tidskrift
2021

Symbol-Based Supervised Learning Predistortion for Compensating Transmitter Nonlinearity

Zonglong He, Jinxiang Song, Christian Häger et al
2021 European Conference on Optical Communication, ECOC 2021
Paper i proceeding
2021

Physics-Based Deep Learning for Fiber-Optic Communication Systems

Christian Häger, Henry D. Pfister
IEEE Journal on Selected Areas in Communications. Vol. 39 (1), p. 280-294
Artikel i vetenskaplig tidskrift
2021

End-to-end Autoencoder for Superchannel Transceivers with Hardware Impairments

Jinxiang Song, Christian Häger, Jochen Schröder et al
2021 Optical Fiber Communications Conference and Exhibition, OFC 2021 - Proceedings
Paper i proceeding
2021

Over-the-fiber Digital Predistortion Using Reinforcement Learning

Jinxiang Song, Zonglong He, Christian Häger et al
2021 European Conference on Optical Communication, ECOC 2021
Paper i proceeding
2021

Learned Decimation for Neural Belief Propagation Decoders

Andreas Buchberger, Christian Häger, Henry D. Pfister et al
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. Vol. 2021-June, p. 8273-8277
Paper i proceeding
2020

Decoding Reed-Muller Codes Using Redundant Code Constraints

Mengke Lian, Christian Häger, Henry D. Pfister
IEEE International Symposium on Information Theory - Proceedings. Vol. 2020-June, p. 42-47
Paper i proceeding
2020

Pruning Neural Belief Propagation Decoders

Andreas Buchberger, Christian Häger, Henry D. Pfister et al
IEEE International Symposium on Information Theory - Proceedings. Vol. 2020-June, p. 338-342
Paper i proceeding
2020

Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation

Christian Häger, Henry D. Pfister, Rick M. Bütler et al
Optical Fiber Communication Conference (OFC) 2020
Paper i proceeding
2020

Revisiting Efficient Multi-Step Nonlinearity Compensation with Machine Learning: An Experimental Demonstration

Vinícius Oliari, Sebastiaan Goossens, Christian Häger et al
Journal of Lightwave Technology. Vol. 38 (12), p. 3114-3124
Artikel i vetenskaplig tidskrift
2020

Benchmarking End-to-end Learning of MIMO Physical-Layer Communication

Jinxiang Song, Christian Häger, Jochen Schröder et al
2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
Paper i proceeding
2020

Learning Physical-Layer Communication with Quantized Feedback

Jinxiang Song, Bile Peng, Christian Häger et al
IEEE Transactions on Communications. Vol. 68 (1), p. 645-653
Artikel i vetenskaplig tidskrift
2020

End-to-End Learning of Geometrical Shaping Maximizing Generalized Mutual Information

Kadir Gümüş, Alex Alvarado, Bin Chen et al
2020 Optical Fiber Communications Conference and Exhibition, OFC 2020 - Proceedings. Vol. Part F174-OFC 2020
Paper i proceeding
2019

Revisiting Multi-Step Nonlinearity Compensation with Machine Learning

Christian Häger, Henry D. Pfister, Rick M. Bütler et al
IET Conference Publications. Vol. 2019
Paper i proceeding
2019

Reinforcement Learning for Channel Coding: Learned Bit-Flipping Decoding

Fabrizio Carpi, Christian Häger, Marco Martalò et al
Annual Allerton Conf. on Communication, Control, and Computing, p. 922-929
Paper i proceeding
2019

Learned Belief-Propagation Decoding with Simple Scaling and SNR Adaptation

Mengke Lian, Fabrizio Carpi, Christian Häger et al
IEEE International Symposium on Information Theory - Proceedings. Vol. 2019-July (July), p. 161-165
Paper i proceeding
2018

Deep Learning of the Nonlinear Schrödinger Equation in Fiber-Optic Communications

Christian Häger, Henry D. Pfister
IEEE International Symposium on Information Theory - Proceedings. Vol. 2018-June, p. 1590-1594
Paper i proceeding
2018

Wideband Time-Domain Digital Backpropagation via Subband Processing and Deep learning

Christian Häger, Henry D. Pfister
European Conference on Optical Communication, ECOC. Vol. 2018-September
Paper i proceeding
2018

Achievable Information Rates for Nonlinear Fiber Communication via End-to-end Autoencoder Learning

Shen Li, Christian Häger, Nil Garcia et al
European Conference on Optical Communication, ECOC. Vol. 2018-September
Paper i proceeding
2018

What Can Machine Learning Teach Us about Communications

Mengke Lian, Christian Häger, Henry D. Pfister
IEEE International Symposium on Information Theory - Proceedings. Vol. 15 January 2019
Paper i proceeding
2018

On Low-Complexity Decoding of Product Codes for High-Throughput Fiber-Optic Systems

Alireza Sheikh, Alexandre Graell i Amat, Gianluigi Liva et al
International Symposium on Turbo Codes and Iterative Information Processing, ISTC. Vol. 2018-December
Paper i proceeding
2018

ASIC Implementation of Time-Domain Digital Backpropagation with Deep-Learned Chromatic Dispersion Filters

Christoffer Fougstedt, Christian Häger, Lars Svensson et al
European Conference on Optical Communication, ECOC. Vol. 2018-September
Paper i proceeding
2018

Approaching Miscorrection-Free Performance of Product Codes with Anchor Decoding

Christian Häger, Henry D. Pfister
IEEE Transactions on Communications. Vol. 66 (7), p. 2797-2808
Artikel i vetenskaplig tidskrift
2018

Nonlinear Interference Mitigation via Deep Neural Networks

Christian Häger, Henry D. Pfister
2018 Optical Fiber Communications Conference and Exposition, OFC 2018 - Proceedings, p. 1-3
Paper i proceeding
2018

Decoding Reed-Muller Codes Using Minimum- Weight Parity Checks

Elia Santi, Christian Häger, Henry D. Pfister
IEEE International Symposium on Information Theory - Proceedings. Vol. 2018-June, p. 1296-1300
Paper i proceeding
2017

Miscorrection-free Decoding of Staircase Codes

Christian Häger, Henry D. Pfister
European Conference on Optical Communication, ECOC. Vol. 2017-September, p. 1-3
Paper i proceeding
2017

Density Evolution for Deterministic Generalized Product Codes on the Binary Erasure Channel at High Rates

Christian Häger, Henry D. Pfister, Alexandre Graell i Amat et al
IEEE Transactions on Information Theory. Vol. 63 (7), p. 4357-4378
Artikel i vetenskaplig tidskrift
2016

On the Information Loss of the Max-Log Approximation in BICM Systems

Mikhail Ivanov, Christian Häger, Fredrik Brännström et al
IEEE Transactions on Information Theory. Vol. 62 (6), p. 3011 - 3025
Artikel i vetenskaplig tidskrift
2016

Density Evolution and Error Floor Analysis for Staircase and Braided Codes

Christian Häger, Henry D. Pfister, Alexandre Graell i Amat et al
Proc. Optical Fiber Communication Conf. and Exposition (OFC)
Paper i proceeding
2016

Deterministic and Ensemble-Based Spatially-Coupled Product Codes

Christian Häger, Henry D. Pfister, Alexandre Graell i Amat et al
IEEE International Symposium on Information Theory - Proceedings. Vol. 2016-August, p. 2114-2118
Paper i proceeding
2016

A Deterministic Construction and Density Evolution Analysis for Generalized Product Codes

Christian Häger, Henry D. Pfister, Alexandre Graell i Amat et al
Övrigt konferensbidrag
2016

Density Evolution for Deterministic Generalized Product Codes with Higher-Order Modulation

Christian Häger, Alexandre Graell i Amat, Henry D. Pfister et al
International Symposium on Turbo Codes and Iterative Information Processing, ISTC. Vol. 2016-October, p. 236-240
Paper i proceeding
2015

On Parameter Optimization for Staircase Codes

Christian Häger, Alexandre Graell i Amat, Henry D. Pfister et al
Proc. Optical Fiber Communication Conference and Exposition (OFC)
Paper i proceeding
2015

Spatially-Coupled Codes for Optical Communications: State-of-the-Art and Open Problems

Alexandre Graell i Amat, Christian Häger, Fredrik Brännström et al
20th OptoElectronics and Communications Conference, OECC 2015, p. Art. no. 7340116-
Paper i proceeding
2015

Terminated and Tailbiting Spatially-Coupled Codes with Optimized Bit Mappings for Spectrally Efficient Fiber-Optical Systems

Christian Häger, Alexandre Graell i Amat, Fredrik Brännström et al
Journal of Lightwave Technology. Vol. 33 (7), p. 1275-1285
Artikel i vetenskaplig tidskrift
2014

Optimized Bit Mappings for Spatially Coupled LDPC Codes over Parallel Binary Erasure Channels

Christian Häger, Alexandre Graell i Amat, Alex Alvarado et al
Proc. 1st IEEE International Conference on Communications (ICC), p. 2064-2069
Paper i proceeding
2014

Improving soft FEC performance for higher-order modulations via optimized bit channel mappings

Christian Häger, Alexandre Graell i Amat, Fredrik Brännström et al
Optics Express. Vol. 22 (12), p. 14544-14558
Artikel i vetenskaplig tidskrift
2014

Comparison of Terminated and Tailbiting Spatially Coupled LDPC Codes With Optimized Bit Mapping for PM-64-QAM

Christian Häger, Alexandre Graell i Amat, Fredrik Brännström et al
2014 European Conference on Optical Communication, ECOC 2014; Cannes; France; 21 September 2014 through 25 September 2014, p. Art. no. 6964047-
Paper i proceeding
2014

A Low-Complexity Detector for Memoryless Polarization-Multiplexed Fiber-Optical Channels

Christian Häger, Lotfollah Beygi, Erik Agrell et al
IEEE Communications Letters. Vol. 18 (2), p. 368-371
Artikel i vetenskaplig tidskrift
2013

Design of APSK Constellations for Coherent Optical Channels with Nonlinear Phase Noise

Christian Häger, Alexandre Graell i Amat, Alex Alvarado et al
IEEE Transactions on Communications. Vol. 61 (8), p. 3362-3373
Artikel i vetenskaplig tidskrift
2012

Constellation Optimization for Coherent Optical Channels Distorted by Nonlinear Phase Noise

Christian Häger, Alexandre Graell i Amat, Alex Alvarado et al
Proceedings - IEEE Global Communications Conference, GLOBECOM, p. 2870-2875
Paper i proceeding

Ladda ner publikationslistor

Du kan ladda ner denna lista till din dator.

Filtrera och ladda ner publikationslista

Som inloggad användare hittar du ytterligare funktioner i MyResearch.

Du kan även exportera direkt till Zotero eller Mendeley genom webbläsarplugins. Dessa hittar du här:

Zotero Connector
Mendeley Web Importer

Tjänsten SwePub erbjuder uttag av Researchs listor i andra format, till exempel kan du få uttag av publikationer enligt Harvard och Oxford i .RIS, BibTex och RefWorks-format.

Visar 2 forskningsprojekt

2021–2023

6G Artificial Intelligence Radar

Jinxiang Song Kommunikationssystem
Lennart Svensson Signalbehandling
Henk Wymeersch Kommunikationssystem
Christian Häger Kommunikationssystem
Furkan Keskin Kommunikationssystem
Juliano Pinto Signalbehandling
Yibo Wu Kommunikationssystem
Chalmers AI-forskningscentrum (CHAIR)

3 publikationer finns
2021–2024

Fysikbaserad djupinlärning för optisk dataöverföring och distribuerad avkänning

Christian Häger Kommunikationssystem
Vetenskapsrådet (VR)

14 publikationer finns
Det kan finnas fler projekt där Christian Häger medverkar, men du måste vara inloggad som anställd på Chalmers för att kunna se dem.