Learning Gradient-Based Feed-Forward Equalizer for VCSELs
Artikel i vetenskaplig tidskrift, 2024

Vertical cavity surface-emitting laser (VCSEL)-based optical interconnects (OI) are crucial for high-speed data transmission in data centers, supercomputers, and vehicles, yet their performance is challenged by harsh and fluctuating thermal conditions. This paper addresses these challenges by integrating an ordinary differential equation (ODE) solver within the VCSEL communication chain, leveraging the adjoint method to enable effective gradient-based optimization of pre-equalizer weights. We propose a machine learning (ML) approach to optimize feed-forward equalizer (FFE) weights for VCSEL transceivers, which significantly enhances signal integrity by managing inter-symbol interference (ISI) and reducing the symbol error rate (SER).

optical communications

end-to-end learning

machine learning

VCSEL-based optical interconnects

Författare

Muralikrishnan Srinivasan

Banaras Hindu University

Alireza Pourafzal

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Stavros Giannakopoulos

Embedded Electronics Systems and Computer Graphics

Peter Andrekson

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Christian Häger

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Photonics

23046732 (eISSN)

Vol. 11 10 943

Optiska länkar för krävande datormiljöer

Stiftelsen för Strategisk forskning (SSF) (CHI19-0004), 2021-01-01 -- 2025-12-31.

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2011)

Telekommunikation

DOI

10.3390/photonics11100943

Mer information

Senast uppdaterat

2025-01-06