Benchmarking End-to-end Learning of MIMO Physical-Layer Communication
Paper i proceeding, 2020

End-to-end data-driven machine learning (ML) of multiple-input multiple-output (MIMO) systems has been shown to have the potential of exceeding the performance of engineered MIMO transceivers, without any a priori knowledge of communication-theoretic principles. In this work, we aim to understand to what extent and for which scenarios this claim holds true when comparing with fair benchmarks. We study closed-loop MIMO, open-loop MIMO, and multi-user MIMO (MU-MIMO) and show that the gains of ML-based communication in the former two cases can be to a large extent ascribed to implicitly learned geometric shaping and bit and power allocation, not to learning new spatial encoders. For MU-MIMO, we demonstrate the feasibility of a novel method with centralized learning and decentralized executing, outperforming conventional zero-forcing. For each scenario, we provide explicit descriptions as well as open-source implementations of the selected neural-network architectures.

Författare

Jinxiang Song

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Christian Häger

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Jochen Schröder

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Tim O'Shea

Virginia Polytechnic Institute and State University

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings

9322115
9781728182988 (ISBN)

2020 IEEE Global Communications Conference, GLOBECOM 2020
Virtual, Taipei, Taiwan,

Frigöra full fiberoptisk kapacitet

Knut och Alice Wallenbergs Stiftelse (KAW 2018.0090), 2019-07-01 -- 2024-06-30.

Coding for terabit-per-second fiber-optical communications (TERA)

Europeiska kommissionen (EU) (EC/H2020/749798), 2017-01-01 -- 2019-12-31.

Ämneskategorier

Telekommunikation

Kommunikationssystem

Datorsystem

DOI

10.1109/GLOBECOM42002.2020.9322115

Mer information

Senast uppdaterat

2022-03-02