Symbol-Based Over-the-Air Digital Predistortion Using Reinforcement Learning
Paper i proceeding, 2022

We propose an over-the-air digital predistortion optimization algorithm using reinforcement learning. Based on a symbol-based criterion, the algorithm minimizes the errors between downsampled messages at the receiver side. The algorithm does not require any knowledge about the underlying hardware or channel. For a generalized memory polynomial power amplifier and additive white Gaussian noise channel, we show that the proposed algorithm achieves performance improvements in terms of symbol error rate compared with an indirect learning architecture even when the latter is coupled with a full sampling rate ADC in the feedback path. Furthermore, it maintains a satisfactory adjacent channel power ratio.

Författare

Yibo Wu

Ericsson AB

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Jinxiang Song

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Christian Häger

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Ulf Gustavsson

Ericsson AB

Alexandre Graell I Amat

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

IEEE International Conference on Communications

15503607 (ISSN)

Vol. 2022-May 2615-2620
9781538683477 (ISBN)

2022 IEEE International Conference on Communications, ICC 2022
Seoul, South Korea,

Ämneskategorier

Telekommunikation

Kommunikationssystem

Signalbehandling

DOI

10.1109/ICC45855.2022.9839091

Mer information

Senast uppdaterat

2024-01-03