Model-Based End-to-End Learning for WDM Systems With Transceiver Hardware Impairments
Artikel i vetenskaplig tidskrift, 2022

We propose an AE-based transceiver for a WDM system impaired by hardware imperfections. We design our AE following the architecture of conventional communication systems. This enables to initialize the AE-based transceiver to have similar performance to its conventional counterpart prior to training and improves the training convergence rate. We first train the AE in a single-channel system, and show that it achieves performance improvements by putting energy outside the desired bandwidth, and therefore cannot be used for a WDM system. We then train the AE in a WDM setup. Simulation results show that the proposed AE significantly outperforms the conventional approach. More specifically, it increases the spectral efficiency of the considered system by reducing the guard band by 37% and 50% for a root-raised-cosine filter-based matched filter with 10% and 1% roll-off, respectively. An ablation study indicates that the performance gain can be ascribed to the optimization of the symbol mapper, the pulse-shaping filter, and the symbol demapper. Finally, we use reinforcement learning to learn the pulse-shaping filter under the assumption that the channel model is unknown. Simulation results show that the reinforcement-learning-based algorithm achieves similar performance to the standard supervised end-to-end learning approach assuming perfect channel knowledge.

Training

Low-pass filters

Hardware

end-to-end learning

Bandwidth

wavelengthdivision multiplexing

digital signal processing

deep learning

reinforcement learning

Transceivers

Wavelength division multiplexing

Receivers

Autoencoders

Författare

Jinxiang Song

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Christian Häger

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Jochen Schröder

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Alexandre Graell I Amat

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

IEEE Journal of Selected Topics in Quantum Electronics

1077-260X (ISSN) 15584542 (eISSN)

Vol. 28 4 7700114

Frigöra full fiberoptisk kapacitet

Knut och Alice Wallenbergs Stiftelse (KAW 2018.0090), 2019-07-01 -- 2024-06-30.

Ämneskategorier

Datorteknik

Kommunikationssystem

Inbäddad systemteknik

DOI

10.1109/JSTQE.2022.3163474

Mer information

Senast uppdaterat

2022-12-27