Primary Thermometry of Propagating Microwaves in the Quantum Regime
Journal article, 2020

The ability to control and measure the temperature of propagating microwave modes down to very low temperatures is indispensable for quantum information processing and may open opportunities for studies of heat transport at the nanoscale, also in the quantum regime. Here, we propose and experimentally demonstrate primary thermometry of propagating microwaves using a transmon-type superconducting circuit. Our device operates continuously, with a sensitivity down to 4×10-4 photons/Hz and a bandwidth of 40 MHz. We measure the thermal occupation of the modes of a highly attenuated coaxial cable in a range of 0.001 to 0.4 thermal photons, corresponding to a temperature range from 35 mK to 210 mK at a frequency around 5 GHz. To increase the radiation temperature in a controlled fashion, we either inject calibrated, wideband digital noise, or heat the device and its environment. This thermometry scheme can find applications in benchmarking and characterization of cryogenic microwave setups, temperature measurements in hybrid quantum systems, and quantum thermodynamics.

Author

Marco Scigliuzzo

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Technology

Andreas Bengtsson

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Technology

Jean-Claude Besse

Swiss Federal Institute of Technology in Zürich (ETH)

Andreas Wallraff

Swiss Federal Institute of Technology in Zürich (ETH)

Per Delsing

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Technology

Simone Gasparinetti

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Technology

Swiss Federal Institute of Technology in Zürich (ETH)

Physical Review X

21603308 (eISSN)

Vol. 10 4 041054

Wallenberg Centre for Quantum Technology (WACQT)

Knut and Alice Wallenberg Foundation (KAW 2017.0449, KAW2021.0009, KAW2022.0006), 2018-01-01 -- 2030-03-31.

Subject Categories (SSIF 2011)

Atom and Molecular Physics and Optics

Materials Chemistry

Other Physics Topics

DOI

10.1103/PhysRevX.10.041054

More information

Latest update

1/14/2025