Primary Thermometry of Propagating Microwaves in the Quantum Regime
Artikel i vetenskaplig tidskrift, 2020

The ability to control and measure the temperature of propagating microwave modes down to very low temperatures is indispensable for quantum information processing and may open opportunities for studies of heat transport at the nanoscale, also in the quantum regime. Here, we propose and experimentally demonstrate primary thermometry of propagating microwaves using a transmon-type superconducting circuit. Our device operates continuously, with a sensitivity down to 4×10-4 photons/Hz and a bandwidth of 40 MHz. We measure the thermal occupation of the modes of a highly attenuated coaxial cable in a range of 0.001 to 0.4 thermal photons, corresponding to a temperature range from 35 mK to 210 mK at a frequency around 5 GHz. To increase the radiation temperature in a controlled fashion, we either inject calibrated, wideband digital noise, or heat the device and its environment. This thermometry scheme can find applications in benchmarking and characterization of cryogenic microwave setups, temperature measurements in hybrid quantum systems, and quantum thermodynamics.

Författare

Marco Scigliuzzo

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Andreas Bengtsson

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Jean-Claude Besse

Eidgenössische Technische Hochschule Zürich (ETH)

Andreas Wallraff

Eidgenössische Technische Hochschule Zürich (ETH)

Per Delsing

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Simone Gasparinetti

Eidgenössische Technische Hochschule Zürich (ETH)

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Physical Review X

21603308 (eISSN)

Vol. 10 4 041054

Ämneskategorier

Atom- och molekylfysik och optik

Materialkemi

Annan fysik

DOI

10.1103/PhysRevX.10.041054

Mer information

Senast uppdaterat

2021-01-12