Methodological Framework for Modelling and Empirical Approaches (Deliverable D1.1 in the H2020 MSCA ITN project SHAPE-IT)
Report, 2021
In SHAPE-IT, for example, a better understanding of human behaviour and the underlying psychological mechanisms will lead to improved models of human behaviour that can help to predict the effects of automated systems on human behaviour already during system development. Such models can also be integrated into the algorithms of automated vehicles, enabling them to better understand the human interaction partners’ behaviours.
Further, the development of vehicle automation is much about technology (software and hardware), but the users will be humans and they will interact with humans both inside and outside of the vehicle. To be successful in the development of automated vehicles functionalities, research must be performed on a variety of aspects. Actually, a highly interdisciplinary team of researchers, bringing together expertise and background from various scientific fields related to traffic safety, human factors, human-machine interaction design and evaluation, automation, computational modelling, and artificial intelligence, is likely needed to consider the human-technology aspects of vehicle automation.
Accordingly, SHAPE-IT has recruited fifteen PhD candidates (Early Stage Researchers – ESRs), that work together to facilitate this integration of automated vehicles into complex urban traffic by performing research to support the development of transparent, cooperative, accepted, trustworthy, and safe automated vehicles. With their (and their supervisors’) different scientific background, the candidates bring different theoretical concepts and methodological approaches to the project. This interdisciplinarity of the project team offers the unique possibility for each PhD candidate to address research questions from a broad perspective – including theories and methodological approaches of other interrelated disciplines. This is the main reason why SHAPE-IT has been funded by the European Commission’s Marie Skłodowska-Curie Innovative Training Network (ITN) program that is aimed to train early state researchers in multidisciplinary aspects of research including transferable skills. With the unique scope of SHAPE-IT, including the human-vehicle perspective, considering different road-users (inside and outside of the vehicle), addressing for example trust, transparency, and safety, and including a wide range of methodological approaches, the project members can substantially contribute to the development and deployment of safe and appreciated vehicle automation in the cities of the future.
To achieve the goal of interdisciplinary research, it is necessary to provide the individual PhD candidate with a starting point, especially on the different and diverse methodological approaches of the different disciplines. The empirical, user-centred approach for the development and evaluation of innovative automated vehicle concepts is central to SHAPE- IT. This deliverable (D1.1 “Methodological Framework for Modelling and Empirical Approaches”) provides this starting point. That is, this document provides a broad overview of approaches and methodologies used and developed by the SHAPE-IT ESRs during their research. The SHAPE-IT PhD candidates, as well as other researchers and developers outside of SHAPE-IT, can use this document when searching for appropriate methodological approaches, or simply get a brief overview of research methodologies often employed in automated vehicle research.
The first chapter of the deliverable shortly describes the major methodological approaches to collect data relevant for investigating road user behaviour. Each subchapter describes one approach, ranging from naturalistic driving studies to controlled experiments in driving simulators, with the goal to provide the unfamiliar reader with a broad overview of the approach, including its scope, the type of data collected, and its limitations. Each subchapter ends with recommendations for further reading – literature that provide much more detail and examples.
The second chapter explains four different highly relevant tools for data collection, such as interviews, questionnaires, physiological measures, and as other current tools (the Wizard of Oz paradigm and Augmented and Virtual Reality). As in the first chapter this chapter provides the reader with information about advantages and disadvantages of the different tools and with proposed further readings.
The third chapter deals with computational models of human/agent interaction and presents in four subchapters different modelling approaches, ranging from models based on psychological mechanisms, rule-based and artificial intelligence models to simulation models of traffic interaction.
The fourth chapter is devoted to Requirements Engineering and the challenge of communicating knowledge (e.g., human factors) to developers of automated vehicles. When forming the SHAPE-IT proposal it was identified that there is a lack of communication of human factors knowledge about the highly technical development of automated vehicles. This is why it is highly important that the SHAPE-IT ESRs get training in requirement engineering. Regardless of the ESRs working in academia or industry after their studies it is important to learn how to communicate and disseminate the findings to engineers.
The deliverable ends with the chapter “Method Champions”. Here the expertise and association of the different PhD candidates with the different topics are made explicit to facilitate and encourage networking between PhDs with special expertise and those seeking support, especially with regards to methodological questions.
Author
Nikol Figalova
University of Ulm
Naomi Mbelekani
Technical University of Munich
Chi Zhang
University of Gothenburg
Yue Yang
University of Leeds
Chen Peng
University of Leeds
Mohamed Nasser
University of Ulm
Liu Yuan-Cheng
Technical University of Munich
Amna Pir Muhammad
University of Gothenburg
Wilbert Tabone
Delft University of Technology
Siri Hegna Berge
Delft University of Technology
Sarang Jokhio
University of Ulm
Xiaolin He
Delft University of Technology
Amir Hossein Kalantari
University of Leeds
Ali Mohammadi
Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Safety
Xiaomi Yang
Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Safety
Jonas Bärgman
Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Safety
Martin Baumann
University of Ulm
Supporting the interaction of Humans and Automated vehicles: Preparing for the Environment of Tomorrow (Shape-IT)
European Commission (EC) (EC/H2020/860410), 2019-10-01 -- 2023-09-30.
Subject Categories (SSIF 2011)
Interaction Technologies
Software Engineering
Human Computer Interaction
DOI
10.17196/shape-it/2021/02/D1.1
Publisher
SHAPE-IT Consortium