A CRISPR Interference Screen of Essential Genes Reveals that Proteasome Regulation Dictates Acetic Acid Tolerance in Saccharomyces cerevisiae
Journal article, 2021

CRISPR interference (CRISPRi) is a powerful tool to study cellular physiology under different growth conditions, and this technology provides a means for screening changed expression of essential genes. In this study, a Saccharomyces cerevisiae CRISPRi library was screened for growth in medium supplemented with acetic acid. Acetic acid is a growth inhibitor challenging the use of yeast for the industrial conversion of lignocellulosic biomasses. Tolerance to acetic acid that is released during biomass hydrolysis is crucial for cell factories to be used in biorefineries. The CRISPRi library screened consists of .9,000 strains, where .98% of all essential and respiratory growth-essential genes were targeted with multiple guide RNAs (gRNAs). The screen was performed using the high-throughput, high-resolution Scan-o-matic platform, where each strain is analyzed separately. Our study identified that CRISPRi targeting of genes involved in vesicle formation or organelle transport processes led to severe growth inhibition during acetic acid stress, emphasizing the importance of these intracellular membrane structures in maintaining cell vitality. In contrast, strains in which genes encoding subunits of the 19S regulatory particle of the 26S proteasome were downregulated had increased tolerance to acetic acid, which we hypothesize is due to ATP salvage through an increased abundance of the 20S core particle that performs ATP-independent protein degradation. This is the first study where high-resolution CRISPRi library screening paves the way to understanding and bioengineering the robustness of yeast against acetic acid stress.

Phenomics

Proteasome

Transcriptional regulation

Oxidative stress

High-throughput screening

Essential genes

Yeast

Acetic acid tolerance

CRISPR interference

Author

Vaskar Mukherjee

Chalmers, Biology and Biological Engineering, Industrial Biotechnology

Ulrika Lind

University of Gothenburg

Robert P.S. Onge

Stanford University

Anders Blomberg

University of Gothenburg

Yvonne Nygård

Chalmers, Biology and Biological Engineering, Industrial Biotechnology

mSystems

23795077 (eISSN)

Vol. 6 4 e00418-21

Subject Categories

Microbiology

Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Other Industrial Biotechnology

DOI

10.1128/mSystems.00418-21

PubMed

34313457

More information

Latest update

8/20/2021