Sulfur capture and release by ilmenite used as oxygen carrier in biomass combustor
Journal article, 2022

Oxygen-Carrier-Aided Combustion (OCAC) is a promising technology for the combustion of solid heterogeneous fuels such as biomass and waste. However, a frequently encountered problem with biomass and waste is their high alkali contents, which can lead to the build-up of deposits on heat transfer surfaces, leading to corrosion and increased maintenance costs. The addition of elementary S is one of the options used in combustion processes to mitigate corrosion. Sulfation of KCl reduces the severity of corrosion on heat transfer surfaces due to the transformation of KCl into K2SO4, which is considered to be less corrosive. Even though many studies have been performed on the influence of sulfur on the corrosion process, there is to date little knowledge about the interaction of S with ilmenite used as an oxygen carrier (OC). Therefore, there is a need to understand the influence of S on both the properties of the ilmenite used as an OC and the morphologic development of the ilmenite particles. This study investigates the interactions between S and ilmenite as bed material, with the focus on the roles of ash layers in the capture and release of the added S under different combustion conditions. The present study focuses on bed material that was exposed in the Chalmers 12-MWth Circulating Fluidized Bed (CFB) combustor run with biomass as fuel and with the addition of elemental S. Calcined ilmenite without ash elements was used as a reference material and the collected bed material samples were tested for their abilities to capture S in a laboratory fluidized bed batch reactor run at 950 °C. Controlled SO2 exposures in an oxidizing environment were carried out, and the reversibility of the mechanisms for uptake and release of S was tested. Understanding the uptake and release of S components by ilmenite is of importance not only for the handling of bed materials, but also for developing new protocols for corrosion prevention in OCAC. In the present study, the ilmenite-sulfur interactions were followed using gas analysis, solid material characterization (SEM-EDX), and thermodynamic calculations (FactSage). The results suggest that SO2 is captured under oxidative conditions, preferentially by bed materials with developed ash layers, and released under reducing conditions. Mixed-sulfate-phase K2Ca2(SO4)3, K2SO4 and CaSO4 are found to be the main formed phases that can participate in S uptake and release.

Circulating Fluidized Bed

Sulfur

Biomass

Oxygen-Carrier-Aided Combustion

Ilmenite

Ash

Author

Mariane Vigoureux

Chalmers, Chemistry and Chemical Engineering, Energy and Material, Environmental Inorganic Chemistry

Chalmers, Space, Earth and Environment, Energy Technology, Energy Technology 2

Tomas Leffler

Chalmers, Chemistry and Chemical Engineering, Energy and Material, Environmental Inorganic Chemistry

Pavleta Knutsson

Chalmers, Chemistry and Chemical Engineering, Energy and Material, Environmental Inorganic Chemistry

Fredrik Lind

Chalmers, Space, Earth and Environment, Energy Technology

Fuel

0016-2361 (ISSN)

Vol. 309 121978

Oxygen Carrier Aided Combustion for more efficient fuel conversion in FB plants with simultaneous recovery of alkali compounds

Swedish Energy Agency (46450-1), 2018-06-01 -- 2021-12-31.

Subject Categories

Chemical Process Engineering

Bioenergy

Corrosion Engineering

DOI

10.1016/j.fuel.2021.121978

More information

Latest update

11/10/2021