Influence of the rounded rear edge on wake bi-stability of a notchback bluff body
Journal article, 2021

The wake bi-stability behind notchback Ahmed bodies is investigated by performing wind tunnel experiments and large eddy simulations (LESs). The focus of this study is on the suppression of bi-stable wakes achieved by rounding the roof's trailing edge of the body. The suppression effect is found to depend on the Reynolds number (R e). The wake behind a sharp edge remains bi-stable for all tested R e. However, for a rounded edge with small radius, wake bi-stability at R e = 0.5 × 10 5 and wake symmetrization with 0.75 × 10 5 ≤ R e ≤ 1.5 × 10 5 are observed. Increasing R e with R e ≥ 1.75 × 10 5, the wake returns to the bi-stable state. Particularly, with R e ≥ 2 × 10 5, a stable asymmetric wake state with no switches is observed for long periods. Performing LES confirms the expected wake asymmetry at R e = 0.5 × 10 5 and symmetry at R e = 1 × 10 5 for the case of rounded edge with a small radius. Besides, another wake symmetry is observed for the rounded edge with a large radius at R e = 0.5 × 10 5. For the two wake symmetries shown in the LES results, the symmetrization is attributed to wake suppression in the notchback region, forcing the flow separation from the rear roof to attach to the slant on both sides of the body.

Author

Kan He

Central South University

National & Local Joint Engineering Research Center of Safety Technology for Rail Vehicle

Chalmers, Mechanics and Maritime Sciences (M2), Fluid Dynamics

Guglielmo Minelli

Volvo Cars

Xinchao Su

Chalmers, Mechanics and Maritime Sciences (M2), Fluid Dynamics

Guangjun Gao

Central South University

National & Local Joint Engineering Research Center of Safety Technology for Rail Vehicle

Sinisa Krajnovic

Chalmers, Mechanics and Maritime Sciences (M2), Fluid Dynamics

Physics of Fluids

1070-6631 (ISSN) 1089-7666 (eISSN)

Vol. 33 11 115107

Subject Categories (SSIF 2011)

Aerospace Engineering

Other Physics Topics

Fluid Mechanics and Acoustics

DOI

10.1063/5.0071925

More information

Latest update

12/10/2021