VCSEL and Integration Techniques for Wavelength-Multiplexed Optical Interconnects
Doctoral thesis, 2021
In this thesis, an intra-cavity phase tuning technique is demonstrated for setting the resonance wavelength of VCSELs in a monolithic array with an accuracy in spacing of <1 nm. Uniform performance over the array is achieved by spectral matching and balancing of mirror reflectances, optical confinement factor and optical gain. Single transverse and polarization mode VCSELs, as required for flip-chip integration over GCs, with a record output power of 6 mW are also demonstrated.
Finally, an investigation of angled flip-chip integration of a VCSEL over a GC on a silicon photonic integrated circuit (Si-PIC) is presented. Dependencies of coupling efficiency and optical feedback on flip-chip angle and size of the VCSEL die are studied using numerical FDTD simulations. Moreover, flip-chip integration of a VCSEL over a GC on a Si-PIC is experimentally demonstrated. The insertion loss from the VCSEL at the input GC to a singlemode fiber, multimode fiber or flip-chip integrated photodetector over the output GC was measured and quantified. The latter forms an on-PIC optical link.
wavelength setting
optical interconnects
mode control
vertical-cavity surface-emitting laser
flip-chip integration
wavelength-division-multiplexing
silicon photonics
Author
Mehdi Jahed
Chalmers, Microtechnology and Nanoscience (MC2), Photonics
Precise setting of micro-cavity resonance wavelength by dry etching
Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics,;Vol. 37(2019)
Journal article
VCSEL Wavelength Setting by Intra-Cavity Phase Tuning - Numerical Analysis and Experimental Verification
IEEE Journal of Quantum Electronics,;Vol. 57(2021)p. 1-7
Journal article
Monolithic Multi-Wavelength VCSEL Arrays with Uniform Performance by Intra-Cavity Phase Tuning
Conference Digest - IEEE International Semiconductor Laser Conference,;(2021)
Paper in proceeding
High-power single transverse and polarization mode VCSEL for silicon photonics integration
Optics Express,;Vol. 27(2019)p. 18892-18899
Journal article
Angled Flip-Chip Integration of VCSELs on Silicon Photonic Integrated Circuits
Journal of Lightwave Technology,;Vol. 40(2022)p. 5190-5200
Journal article
Integrerade optiska sändare för våglängdsmultiplexering i datacenternätverk
Swedish Research Council (VR) (2016-06077), 2017-01-01 -- 2022-12-31.
Multi-Tbps Optical Interconnects (MuTOI)
Swedish Foundation for Strategic Research (SSF) (SE13-0014), 2014-03-01 -- 2019-06-30.
Areas of Advance
Nanoscience and Nanotechnology
Energy
Subject Categories (SSIF 2011)
Other Engineering and Technologies
Electrical Engineering, Electronic Engineering, Information Engineering
Nano Technology
Infrastructure
Nanofabrication Laboratory
ISBN
978-91-7905-596-7
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5063
Publisher
Chalmers
Room A 423 (Kollektorn), Microtechnology and Nanoscience Department, MC2, Kemivägen 9, Göteborg.
Opponent: Professor James A. Lot, Technical University of Berlin
Related datasets
VCSEL and Integration Techniques for Wavelength-Multiplexed Optical Interconnects [dataset]